Abstract

Metasurfaces, the two-dimensional (2D) metamaterials, facilitate the implementation of abrupt phase discontinuities using an array of ultrathin and subwavelength features. These metasurfaces are considered as one of the propitious candidates for realization and development of miniaturized, surface-confined, and flat optical devices. This is because of their unprecedented capabilities to engineer the wavefronts of electromagnetic waves in reflection or transmission mode. The transmission-type metasurfaces are indispensable as the majority of optical devices operate in transmission mode. Along with other innovative applications, previous research has shown that Optical-Vortex (OV) generators based on transmission-type plasmonic metasurfaces overcome the limitations imposed by conventional OV generators. However, significant ohmic losses and the strong dispersion hampered the performance and their integration with state-of-the-art technologies. Therefore, a high contrast all-dielectric metasurface provides a compact and versatile platform to realize the OV generation. The design of this type of metasurfaces relies on the concept of Pancharatnam-Berry (PB) phase aiming to achieve a complete 2π phase control of a spin-inverted transmitted wave. Here, in this paper, we present an ultrathin, highly efficient, all-dielectric metasurface comprising nano-structured silicon on a quartz substrate. With the help of a parameter-sweep optimization, a nanoscale spatial resolution is achieved with a cross-polarized transmission efficiency as high as 95.6% at an operational wavelength of 1.55 µm. Significantly high cross-polarized transmission efficiency has been achieved due to the excitation of electric quadrupole resonances with a very high magnitude. The highly efficient control over the phase has enabled a riveting optical phenomenon. Specifically, the phase profiles of two distinct optical devices, a lens and Spiral-Phase-Plate (SPP), can be merged together, thus producing a highly Focused-Optical-Vortex (FOV) with a maximum focusing efficiency of 75.3%.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation

Heng Zhou, Jiaqi Yang, Chunqing Gao, and Shiyao Fu
Opt. Mater. Express 9(6) 2699-2707 (2019)

High-efficiency all-dielectric transmission metasurface for linearly polarized light in the visible region

Liu Yang, Dong Wu, Yumin Liu, Chang Liu, Zenghui Xu, Hui Li, Zhongyuan Yu, Li Yu, and Han Ye
Photon. Res. 6(6) 517-524 (2018)

All-dielectric reflective metasurface for orbital angular momentum beam generation

Jiaqi Yang, Heng Zhou, and Tian Lan
Opt. Mater. Express 9(9) 3594-3603 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref]
  2. S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref]
  3. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref]
  5. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
    [Crossref]
  6. S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
    [Crossref]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref]
  8. N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
    [Crossref]
  9. T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
    [Crossref]
  10. M. Liu, Q. Fan, L. Yu, and T. Xu, “Polarization-independent infrared micro-lens array based on all-silicon metasurfaces,” Opt. Express 27(8), 10738–10744 (2019).
    [Crossref]
  11. H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
    [Crossref]
  12. Y. Shen, J. Yang, S. Kong, and S. Hu, “Integrated coding metasurface for multi-functional millimeter-wave manipulations,” Opt. Lett. 44(11), 2855–2858 (2019).
    [Crossref]
  13. W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).
  14. H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
    [Crossref]
  15. A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
    [Crossref]
  16. A. Ozer, N. Yilmaz, H. Kocer, and H. Kurt, “Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths,” Opt. Lett. 43(18), 4350–4353 (2018).
    [Crossref]
  17. M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
    [Crossref]
  18. D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
    [Crossref]
  19. T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
    [Crossref]
  20. N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.
  21. M. R. Akram, M. Q. Mehmood, T. Tauqeer, A. S. Rana, I. D. Rukhlenko, and W. Zhu, “Highly efficient generation of bessel beams with polarization insensitive metasurfaces,” Opt. Express 27(7), 9467–9480 (2019).
    [Crossref]
  22. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  23. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  24. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  25. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
    [Crossref]
  26. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
    [Crossref]
  27. Y. Liang, E. Wang, H. Li, and C. Xie, “Tailoring focused optical vortices by using spiral forked plates,” Opt. Lett. 44(4), 935–938 (2019).
    [Crossref]
  28. A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
    [Crossref]
  29. K. Gahagan and G. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref]
  30. W. D. Furlan, F. Giménez, A. Calatayud, and J. A. Monsoriu, “Devil’s vortex-lenses,” Opt. Express 17(24), 21891–21896 (2009).
    [Crossref]
  31. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
    [Crossref]
  32. Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
    [Crossref]
  33. M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref]
  34. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  35. K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
    [Crossref]
  36. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  37. G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
    [Crossref]
  38. H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
    [Crossref]
  39. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref]
  40. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
    [Crossref]
  41. Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
    [Crossref]
  42. B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
    [Crossref]
  43. B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
    [Crossref]
  44. J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
    [Crossref]
  45. X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
    [Crossref]
  46. H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
    [Crossref]
  47. K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
    [Crossref]
  48. B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
    [Crossref]
  49. L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
    [Crossref]
  50. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref]
  51. L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
    [Crossref]
  52. F. Lumerical, “Solutions is a finite-difference time-domain software package for performing electromagnetic simulations. See Lumerical Solutions,” Inc., http://www.lumerical.com ).
  53. M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
    [Crossref]
  54. M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
    [Crossref]
  55. S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
    [Crossref]
  56. S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
    [Crossref]
  57. M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
    [Crossref]
  58. Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
    [Crossref]
  59. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  60. S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805–810 (2019).
    [Crossref]
  61. J. Peatross and M. J. Ware, “Physics of light and optics” (2016), retrieved http://optics.byu.edu/BYUOpticsBook_2015.pdf .
  62. R. C. Jones, “A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus,” J. Opt. Soc. Am. 31(7), 488–493 (1941).
    [Crossref]
  63. R. Oppermann, Analytic Geometry and Calculus, 2nd edition (Pergamon, 1937).
  64. J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

2020 (1)

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

2019 (17)

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
[Crossref]

Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
[Crossref]

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Y. Liang, E. Wang, H. Li, and C. Xie, “Tailoring focused optical vortices by using spiral forked plates,” Opt. Lett. 44(4), 935–938 (2019).
[Crossref]

M. R. Akram, M. Q. Mehmood, T. Tauqeer, A. S. Rana, I. D. Rukhlenko, and W. Zhu, “Highly efficient generation of bessel beams with polarization insensitive metasurfaces,” Opt. Express 27(7), 9467–9480 (2019).
[Crossref]

M. Liu, Q. Fan, L. Yu, and T. Xu, “Polarization-independent infrared micro-lens array based on all-silicon metasurfaces,” Opt. Express 27(8), 10738–10744 (2019).
[Crossref]

Y. Shen, J. Yang, S. Kong, and S. Hu, “Integrated coding metasurface for multi-functional millimeter-wave manipulations,” Opt. Lett. 44(11), 2855–2858 (2019).
[Crossref]

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805–810 (2019).
[Crossref]

2018 (8)

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

A. Ozer, N. Yilmaz, H. Kocer, and H. Kurt, “Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths,” Opt. Lett. 43(18), 4350–4353 (2018).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref]

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

2017 (2)

H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

2016 (4)

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

2015 (4)

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

2014 (4)

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

2013 (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

2012 (2)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

2009 (2)

W. D. Furlan, F. Giménez, A. Calatayud, and J. A. Monsoriu, “Devil’s vortex-lenses,” Opt. Express 17(24), 21891–21896 (2009).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

2008 (2)

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

2006 (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

2004 (1)

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

1996 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1941 (1)

Agrawal, A.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Ahmed, H.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Akbar, A.

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

Akram, M. R.

Ali, M. M.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Allen, B.

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

An, S.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Ansari, M. A.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Anwar, M. S.

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Badloe, T.

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Bai, Q.

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Banerji, S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Boroviks, S.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, R.

Bozhevolnyi, S. I.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Brongersma, M. L.

A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
[Crossref]

Brueck, S.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Burch, J. M.

J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

Calatayud, A.

Cao, G.

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

Capasso, F.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Carletti, L.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Carpentier, A. V.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Chatziantoniou, E.

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Chen, D.-C.

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

Chen, J.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

Chen, W. T.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Chen, W.-T.

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Chen, X.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Chigrinov, V.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref]

Choi, D. Y.

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Chu, C. H.

H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Cihan, A. F.

A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
[Crossref]

Cong, L.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Cui, J.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Danner, A.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

De Angelis, C.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Deng, Y.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Deshpande, R. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Devlin, R. C.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Dong, K.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Dong, Z.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Doshay, S.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Du, T.

Dupré, M.

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref]

Edee, K.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Engheta, N.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Fan, J. A.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Fan, Q.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

M. Liu, Q. Fan, L. Yu, and T. Xu, “Polarization-independent infrared micro-lens array based on all-silicon metasurfaces,” Opt. Express 27(8), 10738–10744 (2019).
[Crossref]

Fan, W.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Fathi, D.

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

Furlan, W. D.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gahagan, K.

Gao, J.

Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
[Crossref]

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Gao, P.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Gao, S.

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Genevet, P.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Ghasemifard, F.

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

Giménez, F.

Gong, Z.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Gregg, P.

Guo, J.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Holsteen, A. L.

A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Hsiao, H. H.

H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Hsu, L.

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref]

Hu, S.

Hu, W.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Huang, C.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Huang, K.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Huang, L.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Huo, P.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Hussain, S.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Jeon, S.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Jeong, H.

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

Ji, X.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Jin, J.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Jones, R. C.

Kanté, B.

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref]

Karimi, E.

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Ke, L.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Khan, M.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Khorasaninejad, M.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Kim, I.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Kocer, H.

Kong, S.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Kurt, H.

Lee, D.

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Lee, S. S.

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Li, G.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Li, H.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Y. Liang, E. Wang, H. Li, and C. Xie, “Tailoring focused optical vortices by using spiral forked plates,” Opt. Lett. 44(4), 935–938 (2019).
[Crossref]

Li, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Li, T.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

Li, X.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Liang, Y.

Y. Liang, E. Wang, H. Li, and C. Xie, “Tailoring focused optical vortices by using spiral forked plates,” Opt. Lett. 44(4), 935–938 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Lin, B.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Ling, X.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Liu, B.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Liu, H.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Liu, M.

Liu, X.-J.

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

Liu, Y.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Liu, Z.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Lou, S.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Lu, W.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

Lu, Y.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Lu, Y. Q.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Luk’yanchuk, B.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Lumerical, F.

F. Lumerical, “Solutions is a finite-difference time-domain software package for performing electromagnetic simulations. See Lumerical Solutions,” Inc., http://www.lumerical.com ).

Luo, J.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Luo, X.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Lv, L.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Ma, X.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Maab, H.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Mahmood, N.

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Majumder, A.

Malloy, K.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Maria, J.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Marrucci, L.

Meem, M.

Mehmood, M.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Mehmood, M. Q.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

M. R. Akram, M. Q. Mehmood, T. Tauqeer, A. S. Rana, I. D. Rukhlenko, and W. Zhu, “Highly efficient generation of bessel beams with polarization insensitive metasurfaces,” Opt. Express 27(7), 9467–9480 (2019).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Mei, S.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Meitl, M.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Menard, E.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Menon, R.

Michinel, H.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Ming, Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Monsoriu, J. A.

Mortensen, N. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Murauski, A.

Nagali, E.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Nam, K. T.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

Oh, J.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Olivieri, D.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Oppermann, R.

R. Oppermann, Analytic Geometry and Calculus, 2nd edition (Pergamon, 1937).

Osgood, R.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Ou, K.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

Ozer, A.

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Pan, W.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Panoiu, N.

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Park, C. S.

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Park, J. U.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Peatross, J.

J. Peatross and M. J. Ware, “Physics of light and optics” (2016), retrieved http://optics.byu.edu/BYUOpticsBook_2015.pdf .

Pégard, N.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Phan, T.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Piccirillo, B.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Pu, M.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Qiu, C.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Qiu, C. W.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Quevedo-Teruel, O.

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

Rahim, A. A.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Ramachandran, S.

L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, and S. Ramachandran, “Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy,” Optica 2(10), 900–903 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Rana, A. S.

Reineke, B.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Rho, J.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Rogers, J. A.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Rubano, A.

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Rukhlenko, I.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

Rukhlenko, I. D.

Sain, B.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Saleem, M.

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

Salgueiro, J. R.

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Santamato, E.

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Sell, D.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Sensale-Rodriguez, B.

Shanei, M. M.

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

Shen, Y.

Siew, S.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Singh, R.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Slussarenko, S.

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Swartzlander, G.

Tahir, F. A.

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Tauqeer, T.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

M. R. Akram, M. Q. Mehmood, T. Tauqeer, A. S. Rana, I. D. Rukhlenko, and W. Zhu, “Highly efficient generation of bessel beams with polarization insensitive metasurfaces,” Opt. Express 27(7), 9467–9480 (2019).
[Crossref]

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

Teng, J.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Tennant, A.

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Tom, K. B.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Tsai, D. P.

H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ullah, A.

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Vasquez, F. G.

Von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Waller, L.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Wang, C.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Wang, E.

Wang, E. W.

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Wang, T.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Wang, X.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Wang, Y.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Ware, M. J.

J. Peatross and M. J. Ware, “Physics of light and optics” (2016), retrieved http://optics.byu.edu/BYUOpticsBook_2015.pdf .

Waseem, M. H.

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Wei, B. Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Woerdman, J.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, D.-J.

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

Wu, J.

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

Xie, C.

Xie, R.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xu, F.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

Xu, N.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Xu, T.

Yan, L.

Yang, F.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Yang, H.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

Yang, J.

Y. Shen, J. Yang, S. Kong, and S. Hu, “Integrated coding metasurface for multi-functional millimeter-wave manipulations,” Opt. Lett. 44(11), 2855–2858 (2019).
[Crossref]

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Yang, J. K.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Yang, X.

Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Ye, H.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Yeo, S. P.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Yerci, S.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

Yilmaz, N.

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yoon, G.

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

You, Z.

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

Yu, F.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

Yu, L.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Zaidi, M. A. A.

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Zaumseil, J.

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

Zentgraf, T.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhai, G.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Zhang, C.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

Zhang, H.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Zhang, L.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Zhang, M.

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

Zhang, S.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Zhang, T.

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Zhang, W.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Zhang, Y.

Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
[Crossref]

Zhao, B.

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Zhao, R.

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Zhao, Z.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8(7), 1940–1950 (2018).
[Crossref]

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

Zheng, B.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Zhou, C.

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Zhu, A. Y.

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Zhu, H.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Zhu, S.

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Zhu, W.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

M. R. Akram, M. Q. Mehmood, T. Tauqeer, A. S. Rana, I. D. Rukhlenko, and W. Zhu, “Highly efficient generation of bessel beams with polarization insensitive metasurfaces,” Opt. Express 27(7), 9467–9480 (2019).
[Crossref]

Zhu, X.-F.

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

Zubair, M.

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

ACS Photonics (2)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional metamirror: polarization splitting and focusing,” ACS Photonics 5(5), 1648–1653 (2018).
[Crossref]

Adv. Mater. (4)

Y. Deng, X. Wang, Z. Gong, K. Dong, S. Lou, N. Pégard, K. B. Tom, F. Yang, Z. You, and L. Waller, “All-Silicon Broadband Ultraviolet Metasurfaces,” Adv. Mater. 30(38), 1802632 (2018).
[Crossref]

S. Jeon, E. Menard, J. U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, “Three-dimensional nanofabrication with rubber stamps and conformable photomasks,” Adv. Mater. 16(15), 1369–1373 (2004).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref]

M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Adv. Mater. Technol. (1)

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Adv. Opt. Mater. (4)

H. Liu, M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, and C. W. Qiu, “Twisted focusing of optical vortices with broadband flat spiral zone plates,” Adv. Opt. Mater. 2(12), 1193–1198 (2014).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

S. Gao, C. S. Park, C. Zhou, S. S. Lee, and D. Y. Choi, “Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light,” Adv. Opt. Mater. 7(21), 1900883 (2019).
[Crossref]

Y. Zhang, J. Gao, and X. Yang, “Topological charge inversion of optical vortex with geometric metasurfaces,” Adv. Opt. Mater. 7(8), 1801486 (2019).
[Crossref]

Adv. Theory Simul. (1)

T. Wang, G. Zhai, R. Xie, S. Zhu, J. Gao, S. An, B. Zheng, H. Li, Y. Liu, and H. Zhang, “Dual-Band Terahertz Auto-Focusing Airy Beam Based on Single-Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength,” Adv. Theory Simul. 2(7), 1900071 (2019).
[Crossref]

Am. J. Phys. (1)

A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Appl. Phys. Lett. (2)

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

D.-C. Chen, X.-F. Zhu, D.-J. Wu, and X.-J. Liu, “Broadband Airy-like beams by coded acoustic metasurfaces,” Appl. Phys. Lett. 114(5), 053504 (2019).
[Crossref]

Electron. Lett. (1)

B. Allen, A. Tennant, Q. Bai, and E. Chatziantoniou, “Wireless data encoding and decoding using OAM modes,” Electron. Lett. 50(3), 232–233 (2014).
[Crossref]

IEEE Access (1)

B. Lin, J. Guo, L. Lv, Z. Liu, X. Ji, and J. Wu, “An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase,” IEEE Access 7, 13317–13325 (2019).
[Crossref]

J. Nanoelectron. Optoelectron. (1)

H. Ahmed, M. M. Ali, A. Ullah, A. A. Rahim, H. Maab, and M. Khan, “An Ultra-Thin Beam Splitter Design Using a-Si: H Based on Phase Gradient Metasurfaces,” J. Nanoelectron. Optoelectron. 14(9), 1339–1343 (2019).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (2)

M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, “A Spin-Encoded All-Dielectric Metahologram for Visible Light,” Laser Photonics Rev. 13(5), 1900065 (2019).
[Crossref]

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, and J. K. Yang, “Silicon multi-meta-holograms for the broadband visible light,” Laser Photonics Rev. 10(3), 500–509 (2016).
[Crossref]

Light: Sci. Appl. (1)

T. Phan, D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, “High-efficiency, large-area, topology-optimized metasurfaces,” Light: Sci. Appl. 8(1), 48 (2019).
[Crossref]

Nano Lett. (3)

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, and C. Qiu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19(2), 1158–1165 (2019).
[Crossref]

B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, “Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography,” Nano Lett. 19(9), 6585–6591 (2019).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Nanoscale (2)

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10(40), 19154–19161 (2018).
[Crossref]

N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, and F. A. Tahir, “Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides,” Nanoscale 10(38), 18323–18330 (2018).
[Crossref]

Nanoscale Horiz. (1)

M. A. Ansari, I. Kim, I. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood, and J. Rho, “Engineering Spin and Antiferromagnetic Resonances to Realize Efficient Direction-multiplexed Visible Meta-hologram,” Nanoscale Horiz. 5(1), 57–64 (2020).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Nat. Photonics (2)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (2)

S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Proc. Natl. Acad. Sci. (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Sci. Rep. (4)

G. Yoon, D. Lee, K. T. Nam, and J. Rho, “Geometric metasurface enabling polarization independent beam splitting,” Sci. Rep. 8(1), 9468 (2018).
[Crossref]

X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, “A planar chiral meta-surface for optical vortex generation and focusing,” Sci. Rep. 5(1), 10365 (2015).
[Crossref]

M. Dupré, L. Hsu, and B. Kanté, “On the design of random metasurface based devices,” Sci. Rep. 8(1), 7162 (2018).
[Crossref]

M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep. 9(1), 13641–11 (2019).
[Crossref]

Science (5)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

A. L. Holsteen, A. F. Cihan, and M. L. Brongersma, “Temporal color mixing and dynamic beam shaping with silicon metasurfaces,” Science 365(6450), 257–260 (2019).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Small Methods (1)

H. H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1(4), 1600064 (2017).
[Crossref]

Other (6)

F. Lumerical, “Solutions is a finite-difference time-domain software package for performing electromagnetic simulations. See Lumerical Solutions,” Inc., http://www.lumerical.com ).

J. Peatross and M. J. Ware, “Physics of light and optics” (2016), retrieved http://optics.byu.edu/BYUOpticsBook_2015.pdf .

R. Oppermann, Analytic Geometry and Calculus, 2nd edition (Pergamon, 1937).

J. M. Burch, Introduction to Matrix Methods in Optics (Wiley-Interscience, 1975).

N. Mahmood, M. Q. Mehmood, I. Kim, M. A. Ansari, T. Tauqeer, F. A. Tahir, and J. Rho, “Manipulating twisted light beam through all-dielectric metasurfaces,” in High Contrast Metastructures VIII, (International Society for Optics and Photonics, 2019), 1092811.

W.-T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, M. A. A. Zaidi, and F. Capasso, “High performance visible wavelength meta-axicons for generating bessel beams,” (Google Patents, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Meta-atom optimization. (a) Schematic of silicon nanobar on quartz substrate; length (L $= 445\; \textrm{nm}$), width (W $= 190\; \textrm{nm}$), height (H $= 920\; \textrm{nm}$), and periodicity (P $= 620\; \textrm{nm}$) are geometric parameters obtained through the parameter-sweep optimization at $1.55\; {\upmu\textrm m}$. (b) The comparison between theoretically predicted (red line) and numerically plotted (black asteriks) phase profiles. (c) and (d) Show the simulated transmission (T) (purple line), co-polarized (red line), and cross-polarized (green line) efficiencies versus wavelength and versus rotation angle (θ) of silicon nanobar at $1.55\; {\upmu\textrm m}$, respectively. The optimized silicon nanobar is investigated for a broad wavelength range. The analysis shows a very high average cross-polarized efficiency of $87.5\%$ with the maximum value of $95.6\%$ at $1.55\; {\upmu {\rm{m}}}$. Moreover, the amplitude of cross-polarized and transmission efficiencies remained uniform as silicon nanobar is rotated from $[{{0^ \circ } - {{180}^ \circ }} ].$
Fig. 2.
Fig. 2. Excitation of resonance modes in a silicon nanobar. (a) and (c) Show the cross-section intensities and vector field profiles of electric fields under x- and y-polarized wave incidence, respectively. (b) and (d) Show the cross-section intensities and vector field profiles of magnetic fields under x and y polarized wave incidence, respectively. These results are plotted at $1.55\; {\upmu {\rm{m}}}$ where maximum cross-polarized efficiency is achieved.
Fig. 3.
Fig. 3. (a) Schematic of a transmission-type metasurface capable of generating the FOV under the RCP incidence. The donut-shaped ring is observed at the focal plane for the cross-polarized component (LCP in this case) with the desired topological charge. (b) Demonstration of numerical aperture calculation for the design of the FOV generator.
Fig. 4.
Fig. 4. Numerical simulation results. (a) and (f) Helical distribution of silicon nanobar for $l\; = \; 2\; \textrm{and}\; 4$, respectively. (b) and (g) Electric field intensity profile in $xz$-plane for (b) $l\; = \; 2$ and (g) $l\; = \; 4$. The white dashed line shows the focal plane. The donut-shaped vortex rings are imaged at the focal plane $({z\; = \; 8.6\; \upmu \textrm{m}} )$ along with their phase pattern for (c) and (d) $l\; = \; 2$ and (h) and (i) $l\; = \; 4$ in $xy$-plane. The black dashed circles in (c) and (h) indicates the annular opening of donut-shaped vortex rings with diameters $1.2\; \upmu \textrm{m}$ and $2.1\; \upmu \textrm{m}$ for $l = 2$ and $l = 4$, respectively. (e) and (j) Show the corresponding horizontal cuts of donut-shaped rings having the FWHM at $0.9\; \upmu \textrm{m}$ and $1.1\; \upmu \textrm{m}$, respectively.
Fig. 5.
Fig. 5. Numerical simulation results for $l= - 2$ and $- 4$. (a) and (b) Helical distribution of nanobars for $l= - 2$ and $l= - 4$, respectively. (b) and (e) Simulated electric field intensities in xy-plane for l = −2 and −4, respectively at the focal plane $(z=8.6\; {\upmu \rm {m}}$). The black dashed circles indicates the annular opening of donut shaped OV rings with diameters $1.2\; {\upmu \textrm {m}}$ and $2.1\; {\upmu {\rm{m}}}$ for $l = 2$ and $l = 4$, respectively. (c) and (f) Show the corresponding phase.
Fig. 6.
Fig. 6. Top view of meta-atom showing the slow and fast axis of silicon nanobar. Here, $\theta $ is the orientation angle between x-axis and slow axis.
Fig. 7.
Fig. 7. (a) Simulated cross-polarized and (b) Co-polarized efficiency maps at $1.55\; {\upmu\textrm m}$. Each point on maps shows the corresponding efficiency of silicon nanobar as a function of length (L) and width (W). The white dashed line shows the region where maximum value of cross-polarized and minimum value of co-polarized component occur. The white asterik indicates the selection of L = $445\; \textrm{nm}$ and W = $190\; \textrm{nm}$.
Fig. 8.
Fig. 8. The top views and side views of simulated energy densities in silicon nanobar. The array of nanobar is rotated by $45^\circ $. The x-polarized plane wave is incident from substrate side. The boundaries of nanobars are indicated by solid black lines.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

J ( θ ) = R ( θ ) J T R ( θ )
= [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] [ t a 0 0 t b ] [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ]
= [ t a cos 2 ( θ ) + t b sin 2 ( θ ) ( t a t b ) cos ( θ ) sin ( θ ) ( t a t b ) cos ( θ ) sin ( θ ) t a sin 2 ( θ ) + t b cos 2 ( θ ) ]
E t = t a + t b 2 E r + t a t b 2 e j 2 θ E l ,
ϕ T ( x , y ) = ϕ S P P ( x , y ) + ϕ l e n s ( x , y ) ,
ϕ S P P ( x , y ) = l t a n 1 ( x / x y y ) ,
ϕ l e n s ( x , y ) = k x 2 + y 2 + f 2 f .
E ( z , t ) = E o e j ( k z ω t ) ,
E o = E x x ^ + E y y ^
R e [ E ( z , t ) ] = R e { E x e j ( k z ω t ) } x ^ + R e { e j π 2 E x e j ( k z ω t ) } y ^
= E x cos ( k z ω t ) x ^ E x cos ( k z ω t + π 2 ) y ^
= E x { cos ( k z ω t ) x ^ + sin ( k z ω t ) y ^ }
E ( z , t ) = ( E x x ^ + E y y ^ ) e j ( k z ω t )
E ( z , t ) = E e f f ( U x ^ + V e j Ψ y ^ ) e j ( k z ω t )
Jones Vector = [ U V e j ψ ]
Jones Vector = 1 2 [ 1 j ]
E i n ( z , t ) = E 1 a ^ 1 + E 2 a ^ 2
E 1 = E x cos ( θ ) + E y sin ( θ )
E 2 = E y sin ( θ ) + E x cos ( θ )
E t ( z , t ) = E 1 a ^ 1 + Υ E 2 a ^ 2
E t ( z , t ) = ( E x cos ( θ ) + E y sin ( θ ) ) ( cos ( θ ) x ^ + sin ( θ ) y ^ ) + Υ ( E y sin ( θ ) + E x cos ( θ ) ) ( sin ( θ ) x ^ + cos ( θ ) y ^ )
E t ( z , t ) = [ E x { cos 2 ( θ ) + Υ sin 2 ( θ ) } + E y { sin ( θ ) cos ( θ ) Υ sin ( θ ) cos ( θ ) } ] x ^ + [ E x { sin ( θ ) cos ( θ ) Υ sin ( θ ) cos ( θ ) } + E y { Υ cos 2 ( θ ) + sin 2 ( θ ) } ] y ^
E t ( z , t ) = [ cos 2 ( θ ) + Υ sin 2 ( θ ) sin ( θ ) cos ( θ ) Υ sin ( θ ) cos ( θ ) sin ( θ ) cos ( θ ) Υ sin ( θ ) cos ( θ ) Υ cos 2 ( θ ) + sin 2 ( θ ) ] [ E x E y ]
J m ( θ ) = [ cos 2 ( θ ) sin 2 ( θ ) sin 2 ( θ ) cos 2 ( θ ) ]
R ( θ ) = [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ]
J ( θ ) = R ( θ ) J T R ( θ )