Abstract

We propose a new pretreatment method on fiber preforms by loading deuterium (D2), pre-irradiation, combined with thermal annealing. The effect of the pretreatment condition on the optical loss at 1200 nm and a laser slope efficiency of ytterbium-doped silica fibers (YDFs) before and after γ-radiation was comparatively investigated. The related mechanism was revealed by combining the optical absorption, continuous wave electron paramagnetic resonance (CW-EPR), Raman, and Fourier transform infrared (FTIR) spectroscopies. A laser experiment shows that the radiation resistance of YDFs can be significantly improved by the pretreatment on a fiber preform. Also, this new pretreatment method has no obvious negative impact on the laser performance of non-irradiated YDFs. Furthermore, the vacuum experiment confirms that the YDF obtained by this method, named pretreated YDF, may have a long-term radiation stability when it is used in a vacuum environment (such as space). CW-EPR spectra show that the formation of color centers was effectively inhibited in pretreated YDF, which is correlated with the decrease of color center precursor and the existence of the deuterium radical as confirmed by Raman and FTIR spectra.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photodarkening-resistance improvement of Yb3+/Al3+ co-doped silica fibers fabricated via sol-gel method

Fenghou Xie, Chongyun Shao, Meng Wang, Qinling Zhou, Fengguang Lou, Wenbin Xu, Chunlei Yu, Suya Feng, and Lili Hu
Opt. Express 26(22) 28506-28516 (2018)

Elimination of radiation damage in Tm-doped silica fibers based on the radical bleaching of deuterium loading

Yingbin Xing, Yinzi Liu, Ruiting Cao, Lei Liao, Yingbo Chu, Yibo Wang, Jinggang Peng, Haiqing Li, Luyun Yang, Nengli Dai, and Jinyan Li
OSA Continuum 1(3) 987-995 (2018)

Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction

B. Hari Babu, Matthieu Lancry, Nadege Ollier, Hicham El Hamzaoui, Mohamed Bouazaoui, and Bertrand Poumellec
Appl. Opt. 55(27) 7455-7461 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Wright and G. C. Valley, “Yb-doped fiber amplifier for deep-space optical communications,” J. Lightwave Technol. 23(3), 1369–1374 (2005).
    [Crossref]
  2. Y. Wang, G. Chen, and J. Li, “Development and prospect of high-power doped fibers,” High Power Laser Sci. Eng. 6, e40 (2018).
    [Crossref]
  3. J. Duchez, F. Mady, Y. Mebrouk, N. Ollier, and M. Benabdesselam, “Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers,” Opt. Lett. 39(20), 5969–5972 (2014).
    [Crossref]
  4. F. X. Fenghou Xie, C. S. Chongyun Shao, F. L. Fengguang Lou, M. W. Meng Wang, C. Y. Chunlei Yu, S. F. Suya Feng, and L. H. Lili Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
    [Crossref]
  5. M. L. Miao Li, G. C. Gui Chen, J. L. Jinyong Leng, J. C. Jinbao Chen, and J. L. Jinyan Li, “Non-isothermal bleaching of Yb-Li co-doped silica fibers,” Chin. Opt. Lett. 17(3), 031401 (2019).
    [Crossref]
  6. N. Zhao, W. Li, J. Li, G. Zhou, and J. Li, “Elimination of the Photodarkening Effect in an Yb-Doped Fiber Laser With Deuterium,” J. Lightwave Technol. 37(13), 3021–3026 (2019).
    [Crossref]
  7. S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
    [Crossref]
  8. K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
    [Crossref]
  9. S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
    [Crossref]
  10. F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).
  11. K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
    [Crossref]
  12. A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
    [Crossref]
  13. M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).
  14. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5(5), 712–733 (1987).
    [Crossref]
  15. J. Stone, “Reduction of OH absorption in optical fibers by OH→OD isotope exchange,” Ind. Eng. Chem. Prod. Res. Dev. 25(4), 609–621 (1986).
    [Crossref]
  16. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
    [Crossref]
  17. B. Staurt, Infrared Spectroscopy: Fundamentals and Applications (John Wiley and Sons, Ltd., 2004).
  18. B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
    [Crossref]
  19. F. L. Galeener and A. E. Geissberger, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
    [Crossref]
  20. S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
    [Crossref]
  21. C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
    [Crossref]
  22. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
    [Crossref]
  23. S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
    [Crossref]
  24. M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. Guryanov, “Radiation resistance of Er-doped silica fibers: effect of host glass composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
    [Crossref]
  25. S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
    [Crossref]
  26. G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
    [Crossref]
  27. F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
    [Crossref]
  28. C. M. Hartwig, “The radiation-induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66(1), 227–238 (1977).
    [Crossref]

2019 (3)

2018 (4)

F. X. Fenghou Xie, C. S. Chongyun Shao, F. L. Fengguang Lou, M. W. Meng Wang, C. Y. Chunlei Yu, S. F. Suya Feng, and L. H. Lili Hu, “Effect of power scale of 974 and 633 nm lasers on the induced loss at 633 nm of Yb3+/Al3+ co-doped silica fiber,” Chin. Opt. Lett. 16(1), 010603 (2018).
[Crossref]

Y. Wang, G. Chen, and J. Li, “Development and prospect of high-power doped fibers,” High Power Laser Sci. Eng. 6, e40 (2018).
[Crossref]

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

2017 (1)

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

2014 (3)

2013 (1)

2009 (2)

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

2008 (1)

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

2005 (1)

1996 (1)

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

1987 (1)

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5(5), 712–733 (1987).
[Crossref]

1986 (1)

J. Stone, “Reduction of OH absorption in optical fibers by OH→OD isotope exchange,” Ind. Eng. Chem. Prod. Res. Dev. 25(4), 609–621 (1986).
[Crossref]

1983 (2)

F. L. Galeener and A. E. Geissberger, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

1982 (1)

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[Crossref]

1981 (1)

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

1977 (2)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

C. M. Hartwig, “The radiation-induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66(1), 227–238 (1977).
[Crossref]

Agarwal, A.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Agnello, S.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Alessi, A.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Baggio, J.

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Benabdesselam, M.

Bonnefois, J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Boscaino, R.

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

Boukenter, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Boulon, G.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

Boutillier, M.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

Bubnov, M. M.

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. Guryanov, “Radiation resistance of Er-doped silica fibers: effect of host glass composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
[Crossref]

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Cadier, B.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Cannas, M.

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

Chen, D.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Chen, G.

Y. Wang, G. Chen, and J. Li, “Development and prospect of high-power doped fibers,” High Power Laser Sci. Eng. 6, e40 (2018).
[Crossref]

Chen, W.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

Chongyun Shao, C. S.

Chunlei Yu, C. Y.

Chuska, R.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Davis, K. M.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

De Michele, V.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Detrio, J. A.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Di Francesca, D.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Duchez, J.

Feng, S.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Fengguang Lou, F. L.

Fenghou Xie, F. X.

Ferlet-Cavrois, V.

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Fernelius, N.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friedberg, P.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Galeener, F. L.

F. L. Galeener and A. E. Geissberger, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[Crossref]

Geissberger, A. E.

F. L. Galeener and A. E. Geissberger, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

Giacomazzi, L.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Girard, S.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Griscom, D. L.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Gui Chen, G. C.

Guryanov, A.

Guryanov, A. N.

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Guzik, M.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

Hartwig, C. M.

C. M. Hartwig, “The radiation-induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66(1), 227–238 (1977).
[Crossref]

Hirao, K.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Hu, L.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Jin, X. L.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Jinbao Chen, J. C.

Jinyan Li, J. L.

Jinyong Leng, J. L.

Klyamkin, S. N.

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Kumar, B.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Ladaci, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

Laurent, A.

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

Li, J.

Li, W.

Likhachev, M. E.

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. Guryanov, “Radiation resistance of Er-doped silica fibers: effect of host glass composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
[Crossref]

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Lili Hu, L. H.

Lipatov, D. S.

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Lou, F.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Mady, F.

Malenab, M.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Marcandella, C.

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Marin, E.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Martin-Samos, L.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Matuszeski, A.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Mebrouk, Y.

Mekki, J.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Meng Wang, M. W.

Mescia, L.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

Messina, F.

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

Miao Li, M. L.

Morana, A.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Ollier, N.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

J. Duchez, F. Mady, Y. Mebrouk, N. Ollier, and M. Benabdesselam, “Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers,” Opt. Lett. 39(20), 5969–5972 (2014).
[Crossref]

Origlio, G.

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

Ott, M. N.

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Ouerdane, Y.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Paillet, P.

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Paveau, A.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

Pinsard, E.

Ren, J.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Richard, N.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Robin, T.

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Shao, C.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Staurt, B.

B. Staurt, Infrared Spectroscopy: Fundamentals and Applications (John Wiley and Sons, Ltd., 2004).

Stone, J.

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5(5), 712–733 (1987).
[Crossref]

J. Stone, “Reduction of OH absorption in optical fibers by OH→OD isotope exchange,” Ind. Eng. Chem. Prod. Res. Dev. 25(4), 609–621 (1986).
[Crossref]

Suya Feng, S. F.

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Tomashuk, A.

Tomashuk, A. L.

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Tomozawa, M.

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

Tortech, B.

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Valley, G. C.

Wang, F.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Wang, M.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Wang, S.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

Wang, Y.

Y. Wang, G. Chen, and J. Li, “Development and prospect of high-power doped fibers,” High Power Laser Sci. Eng. 6, e40 (2018).
[Crossref]

Winkler, B.

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Wright, M. W.

Xie, F.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Xu, X.

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Yashkov, M. V.

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. Guryanov, “Radiation resistance of Er-doped silica fibers: effect of host glass composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
[Crossref]

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Yu, C.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Zhang, L.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

Zhang, X.

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Zhao, N.

Zhou, G.

Zhou, Q.

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

Zotov, K. V.

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, A. Tomashuk, D. S. Lipatov, M. V. Yashkov, and A. Guryanov, “Radiation resistance of Er-doped silica fibers: effect of host glass composition,” J. Lightwave Technol. 31(5), 749–755 (2013).
[Crossref]

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

Appl. Phys. Lett. (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31(1), 33–35 (1977).
[Crossref]

Chin. Opt. Lett. (2)

High Power Laser Sci. Eng. (1)

Y. Wang, G. Chen, and J. Li, “Development and prospect of high-power doped fibers,” High Power Laser Sci. Eng. 6, e40 (2018).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

K. V. Zotov, M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, and S. N. Klyamkin, “Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications,” IEEE Trans. Nucl. Sci. 55(4), 2213–2215 (2008).
[Crossref]

S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, and A. Boukenter, “Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers,” IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009).
[Crossref]

Ind. Eng. Chem. Prod. Res. Dev. (1)

J. Stone, “Reduction of OH absorption in optical fibers by OH→OD isotope exchange,” Ind. Eng. Chem. Prod. Res. Dev. 25(4), 609–621 (1986).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium treatment and infrared transmission spectra of fused silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

J. Appl. Phys. (2)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

A. Ladaci, S. Girard, L. Mescia, T. Robin, A. Laurent, B. Cadier, M. Boutillier, Y. Ouerdane, and A. Boukenter, “Optimized radiation-hardened erbium doped fiber amplifiers for long space missions,” J. Appl. Phys. 121(16), 163104 (2017).
[Crossref]

J. Chem. Phys. (1)

C. M. Hartwig, “The radiation-induced formation of hydrogen and deuterium compounds in silica as observed by Raman scattering,” J. Chem. Phys. 66(1), 227–238 (1977).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Chem. C (1)

S. Wang, F. Lou, C. Yu, Q. Zhou, M. Wang, S. Feng, D. Chen, L. Hu, W. Chen, M. Guzik, and G. Boulon, “Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass,” J. Mater. Chem. C 2(22), 4406–4414 (2014).
[Crossref]

J. Non-Cryst. Solids (2)

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[Crossref]

K. M. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, “Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass,” J. Non-Cryst. Solids 203, 27–36 (1996).
[Crossref]

J. Opt. (1)

S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, and A. Boukenter, “Recent advances in radiation-hardened fiber-based technologies for space applications,” J. Opt. 20(9), 093001 (2018).
[Crossref]

J. Phys. Chem. B (1)

C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, and L. Hu, “Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+ -Doped Silica Glasses: Effect of the P/Al Ratio,” J. Phys. Chem. B 122(10), 2809–2820 (2018).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (2)

F. L. Galeener and A. E. Geissberger, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
[Crossref]

G. Origlio, F. Messina, M. Cannas, R. Boscaino, S. Girard, A. Boukenter, and Y. Ouerdane, “Optical properties of phosphorus-related point defects in silica fiber preforms,” Phys. Rev. B 80(20), 205208 (2009).
[Crossref]

Reviews in Physics (1)

S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, and B. Winkler, “Overview of radiation induced point defects in silica-based optical fibers,” Reviews in Physics 4, 100032 (2019).
[Crossref]

Other (3)

F. Lou, C. Yu, L. Hu, M. Wang, X. Xu, L. Zhang, S. Feng, and D. Chen, “Ytterbium aluminum phosphorus fluorine doped silica fiber preform core rod and its preparation method,” (2019.04.19, 2016).

M. N. Ott, X. L. Jin, R. Chuska, P. Friedberg, M. Malenab, and A. Matuszeski, “Space flight requirements for fiber optic components: qualification testing and lessons learned,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

B. Staurt, Infrared Spectroscopy: Fundamentals and Applications (John Wiley and Sons, Ltd., 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Flow chart of sample preparation and test
Fig. 2.
Fig. 2. Schematic diagram of the fiber laser experimental setup
Fig. 3.
Fig. 3. Fourier transform infrared (FTIR) spectra of (a) liquid nature water (H2O), heavy water (D2O), and their mixed solution (H2O & D2O), (b) pristine, D2 loaded and pretreated preform core glasses
Fig. 4.
Fig. 4. Raman spectra of pristine and pretreated preform core glasses as well as pure silica glass (α-SiO2), the inset in Fig. 4 shows a magnified view of Raman spectrum from 1275 to 1375 cm−1.
Fig. 5.
Fig. 5. Radiation-induced absorption (RIA) (a) and electron paramagnetic resonance (EPR) spectra (b) of pristine and pretreated preforms before and after 1700 Gy γ-irradiation.
Fig. 6.
Fig. 6. structural diagram of mutual evolution of P-related groups and P-related defects under irradiation for (a) pristine preform, (b) D2 loaded preform, (c-d) pretreated preform
Fig. 7.
Fig. 7. Optical loss spectra (a, b, c) and laser slope efficiency (d, e, f) of pristine (a, d), pretreated (b, e), and pretreatment combined with vacuum treated (c, f) optical fibers before and after 700 Gy γ-irradiation.

Tables (2)

Tables Icon

Table 1. Detailed pretreatment condition for fiber preform

Tables Icon

Table 2. Position and assignment of main OH, OD and Si-O-Si vibration absorption bands in silica glass

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C O D = M O D ε ρ × 1 L × l g T 0 T × 10 6
ν = 1 2 π c K µ
µ = m 1 m 2 m 1 + m 2
2 [ O = P O 3 / 2 ] 0 ( P = O bond ) h υ [ P O 5 / 2 + h + ] + ( POHC ) + [ P O 4 / 2 + e ] 0 ( P 2 ) + e
2 [ O = P O 3 / 2 ] 0 ( P = O bond ) + D 2 h υ [ DO P O 3 / 2 ] + ( P OD ) + [ D P O 4 / 2 ] 2 + ( P D ) + 3 e
[ O 3 / 2 Si O Si O 3 / 2 ] 0 ( Si O Si ) + D 2 h υ [ O 3 / 2 Si OD ] 0 ( Si OD ) + [ D Si O 3 / 2 ] 2 + ( Si D ) + 2 e
[ D Si O 3 / 2 ] 2 + ( Si D bond ) h υ [ D ] 0 ( Deuterium radical ) + [ Si O 3 / 2 ] 0 ( Si E )
[ D P O 4 / 2 ] 2 + ( P D bond ) h υ [ D ] 0 ( Deuterium radical ) + [ P O 4 / 2 + e ] 0 ( P 2 )
[ D ] 0 ( Deuterium radical ) + [ P O 5 / 2 + h + ] + ( POHC ) h υ [ DO P O 3 / 2 ] + ( P OD )