Abstract

In this study, the influence of ytterbium ions (Yb3+) on the fluorescence lifetime of erbium (Er)-doped silica optical fiber (EDF) is investigated. An Er/Yb co-doped fiber is fabricated by modified chemical vapor deposition (MCVD), along with the atomic layer deposition (ALD) method. Moreover, the spectral properties of this fiber, such as absorption, luminescence, excitation and emission spectra, and the fluorescence lifetime, are studied experimentally; the results of the experiments are then compared with those of the EDF. The results revealed the existence of a broadband luminescence spectrum at 800-1300 nm. The fluorescence lifetime of the Er/Yb co-doped fiber at 1531 nm is 11.77  ms, whereas that of the EDF is 10.16 ms. The lifetime of Yb3+ is 415 µs, which is 565 µs less than that of the Yb-doped fiber (980 µs), at 1033 nm. Simultaneously, various models of the Er-doped, Yb-doped, and Er/Yb co-doped fibers in three membered ring (3MR) structures were built, and their excited states were analyzed. The results indicated that an energy transfer is associated with the change in lifetime, and that the doping of Yb3+ significantly improves the fluorescence lifetime of Er3+ at 1533 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped fibers fabricated with atomic layer deposition method

Joan J. Montiel i Ponsoda, Lars Norin, Changgeng Ye, Markus Bosund, Mikko J. Söderlund, Ari Tervonen, and Seppo Honkanen
Opt. Express 20(22) 25085-25095 (2012)

Radiation-induced photoluminescence enhancement of Bi/Al-codoped silica optical fibers via atomic layer deposition

Jianxiang Wen, Wenjun Liu, Yanhua Dong, Yanhua Luo, Gang-ding Peng, Na Chen, Fufei Pang, Zhenyi Chen, and Tingyun Wang
Opt. Express 23(22) 29004-29013 (2015)

Photodarkening-resistance improvement of Yb3+/Al3+ co-doped silica fibers fabricated via sol-gel method

Fenghou Xie, Chongyun Shao, Meng Wang, Qinling Zhou, Fengguang Lou, Wenbin Xu, Chunlei Yu, Suya Feng, and Lili Hu
Opt. Express 26(22) 28506-28516 (2018)

References

  • View by:
  • |
  • |
  • |

  1. SAT/WASC, Erbium-doped Fiber Amplifier (Springer, 2001).
  2. M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
    [Crossref]
  3. S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
    [Crossref]
  4. S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
    [Crossref]
  5. S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
    [Crossref]
  6. A. Mujadin and A. Syahriar, “Characterization of L band erbium doped fiber amplifier,” Adv. Sci. Lett. 23(4), 3695–3699 (2017).
    [Crossref]
  7. S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
    [Crossref]
  8. V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
    [Crossref]
  9. B. Attaouia and K. Malika, “The effects of concentration quenching and the position of EDFA amplifier on WDM/TDM,” International Conference on Electrical Engineering (2016).
  10. S. Sergeyev and D. Khoptyar, “Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fiber,” Proc. SPIE 6610, 66100L (2007).
    [Crossref]
  11. J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
    [Crossref]
  12. C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
    [Crossref]
  13. D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
    [Crossref]
  14. V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
    [Crossref]
  15. W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
    [Crossref]
  16. K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
    [Crossref]
  17. Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).
  18. J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
    [Crossref]
  19. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [Crossref]
  20. B. C. Hwang, S. Jiang, T. Luo, J. Watson, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+-Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833–839 (2000).
    [Crossref]
  21. Y. H. Luo, J. X. Wen, J. Z. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447–3449 (2012).
    [Crossref]
  22. M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
    [Crossref]
  23. C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).
  24. Z. M. Sathi, J. Z. Zhang, Y. H. Luo, J. Canning, and G. D. Peng, “Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping,” Opt. Mater. Express 5(10), 2096 (2015).
    [Crossref]
  25. J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
    [Crossref]
  26. R. Hanna, “Infrared absorption spectrum of silicon dioxide,” J. Am. Ceram. Soc. 48(11), 595–599 (1965).
    [Crossref]
  27. T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
    [Crossref]
  28. M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
    [Crossref]
  29. X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
    [Crossref]
  30. M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
    [Crossref]
  31. J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
    [Crossref]
  32. X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).
  33. M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
    [Crossref]
  34. J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
    [Crossref]

2017 (6)

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

A. Mujadin and A. Syahriar, “Characterization of L band erbium doped fiber amplifier,” Adv. Sci. Lett. 23(4), 3695–3699 (2017).
[Crossref]

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
[Crossref]

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

2015 (3)

Z. M. Sathi, J. Z. Zhang, Y. H. Luo, J. Canning, and G. D. Peng, “Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping,” Opt. Mater. Express 5(10), 2096 (2015).
[Crossref]

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

2013 (1)

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

2012 (2)

Y. H. Luo, J. X. Wen, J. Z. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447–3449 (2012).
[Crossref]

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

2010 (1)

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

2007 (3)

S. Sergeyev and D. Khoptyar, “Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fiber,” Proc. SPIE 6610, 66100L (2007).
[Crossref]

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

2005 (3)

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

2001 (2)

S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
[Crossref]

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

2000 (2)

B. C. Hwang, S. Jiang, T. Luo, J. Watson, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+-Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833–839 (2000).
[Crossref]

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

1999 (1)

M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
[Crossref]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

1989 (1)

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

1988 (1)

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

1982 (1)

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

1965 (1)

R. Hanna, “Infrared absorption spectrum of silicon dioxide,” J. Am. Ceram. Soc. 48(11), 595–599 (1965).
[Crossref]

Afanasiev, F. V.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Agawane, G. L.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
[Crossref]

Alyshev, S. V.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Atanasov, M.

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

Attaouia, B.

B. Attaouia and K. Malika, “The effects of concentration quenching and the position of EDFA amplifier on WDM/TDM,” International Conference on Electrical Engineering (2016).

Babu, S.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Barbar, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Barnes, W. L.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Bayer, V.

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Canning, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Chang, J. P.

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

Chen, D.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Chen, D. D.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Chen, N.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Chen, Y. K.

S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
[Crossref]

Chen, Z. Y.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Choi, J. H.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
[Crossref]

Da Silva, J. L. F.

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Danilov, V. P.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Daul, C.

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Dianov, E. M.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Dong, G. P.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Dong, Y. H.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Duan, K. L.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Fan, S.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Firstov, S. V.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Ganduglia-Pirovano, M. V.

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Gapontsev, V. P.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Giedraityte, Z.

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

Glasmacher, R.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Güdel, H. U.

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

Guo, Y. K.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Guryanov, A. N.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Han, Y

C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).

Handke, M.

M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
[Crossref]

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

Hanna, R.

R. Hanna, “Infrared absorption spectrum of silicon dioxide,” J. Am. Ceram. Soc. 48(11), 595–599 (1965).
[Crossref]

Hoang, J.

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

Hou, L. T.

C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).

Hsu, S.

S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
[Crossref]

Hu, L.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Hu, W.

C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Hwang, B. C.

Isineev, A. A.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Jayasimhadri, M.

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Jiang, C.

C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Jiang, D. Y.

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Jiang, S.

Kang, S. L.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Karppinen, M.

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

Khegai, A. M.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Khopin, V. F.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Khoptyar, D.

S. Sergeyev and D. Khoptyar, “Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fiber,” Proc. SPIE 6610, 66100L (2007).
[Crossref]

Kojima, K.

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Kravchenko, V. B.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Kresse, G.

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Li, J. F.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Liang, T. C.

S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
[Crossref]

Lin, X. D.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Linganna, K.

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
[Crossref]

Luo, T.

Luo, W. Y.

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

Luo, Y. H.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Z. M. Sathi, J. Z. Zhang, Y. H. Luo, J. Canning, and G. D. Peng, “Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping,” Opt. Mater. Express 5(10), 2096 (2015).
[Crossref]

Y. H. Luo, J. X. Wen, J. Z. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447–3449 (2012).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Malika, K.

B. Attaouia and K. Malika, “The effects of concentration quenching and the position of EDFA amplifier on WDM/TDM,” International Conference on Electrical Engineering (2016).

Marcel, P.

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

Matitsin, S. M.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Melkumov, M. A.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Michel, P.

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

Mika, L.

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

Moorthy, L. R.

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Mozgawa, W.

M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
[Crossref]

Mujadin, A.

A. Mujadin and A. Syahriar, “Characterization of L band erbium doped fiber amplifier,” Adv. Sci. Lett. 23(4), 3695–3699 (2017).
[Crossref]

Nalin, M.

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

Pan, Q. W.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Pang, F. F.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Payne, D. N.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Peng, G. D.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Z. M. Sathi, J. Z. Zhang, Y. H. Luo, J. Canning, and G. D. Peng, “Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping,” Opt. Mater. Express 5(10), 2096 (2015).
[Crossref]

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

Y. H. Luo, J. X. Wen, J. Z. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447–3449 (2012).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Percivel, R. M.

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

Perry, I. R.

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

Peyghambarian, N.

Poole, S. B.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Prasad, V. R.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Prokhorov, A. M.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Qiu, J. R.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Ratnakaram, Y. C.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Reekie, L.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Ren, J.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Riumkin, K. E.

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Sathi, Z. M.

Sauer, J.

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Schmid, D.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Schwan, L. O.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Schwartz, R. N.

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

Sergeyev, S.

S. Sergeyev and D. Khoptyar, “Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fiber,” Proc. SPIE 6610, 66100L (2007).
[Crossref]

Seshadri, M.

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Sidney, J. L.

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

Sitarz, M.

M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
[Crossref]

Smart, R. G.

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

Studenikin, M. I.

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Sun, X. X.

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Syahriar, A.

A. Mujadin and A. Syahriar, “Characterization of L band erbium doped fiber amplifier,” Adv. Sci. Lett. 23(4), 3695–3699 (2017).
[Crossref]

Taylor, D. J.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Townsend, J. E.

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

Tuomisto, M.

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

Vezin, H.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Wada, N.

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Wang, J.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Wang, K. L.

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

Wang, Q.

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Wang, S.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Wang, T. Y.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Wang, X.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Wang, Y. S.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Watson, J.

Wen, J. X.

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

Y. H. Luo, J. X. Wen, J. Z. Zhang, J. Canning, and G. D. Peng, “Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands,” Opt. Lett. 37(16), 3447–3449 (2012).
[Crossref]

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Wesolowski, T. A.

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

Xia, C. M.

C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).

Xiao, X. D.

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Xiao, Z. Y.

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

Yamaoto, K.

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Younes, M.

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

Yu, C.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Zbiri, M.

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

Zeng, Q.

C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

Zeng, X. L.

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

Zhang, J. Z.

Zhang, R.

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

Zhao, W.

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Zhou, G. Y.

C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).

Adv. Sci. Lett. (1)

A. Mujadin and A. Syahriar, “Characterization of L band erbium doped fiber amplifier,” Adv. Sci. Lett. 23(4), 3695–3699 (2017).
[Crossref]

Appl. Surf. Sci. (1)

J. X. Wen, J. Wang, Y. H. Dong, N. Chen, Y. H. Luo, G. D. Peng, F. F. Pang, Z. Y. Chen, and T. Y. Wang, “Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method,” Appl. Surf. Sci. 349, 287–291 (2015).
[Crossref]

Electron. Lett. (1)

D. C. Hanna, R. M. Percivel, I. R. Perry, R. G. Smart, and A. C. Tropper, “Efficient operation of an Yb-sensitised Er fibre laser pumped in 0.8 µm region,” Electron. Lett. 24(17), 1068–1069 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Jiang, W. Hu, and Q. Zeng, “Improved gain performance of high concentration Er3+-Yb3+ co-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 41(5), 704–708 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barbar, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Inorg. Chem. (1)

M. Atanasov, C. Daul, H. U. Güdel, T. A. Wesolowski, and M. Zbiri, “Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study,” Inorg. Chem. 44(8), 2954–2963 (2005).
[Crossref]

J. Alloys. Compd. (1)

X. Wang, R. Zhang, J. Ren, H. Vezin, S. Fan, C. Yu, D. Chen, S. Wang, and L. Hu, “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization,” J. Alloys. Compd. 695, 2339–2346 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

R. Hanna, “Infrared absorption spectrum of silicon dioxide,” J. Am. Ceram. Soc. 48(11), 595–599 (1965).
[Crossref]

J. Appl. Phys. (1)

J. Hoang, R. N. Schwartz, K. L. Wang, and J. P. Chang, “The effects of energy transfer on the Er3+ 1.54µm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants,” J. Appl. Phys. 112(6), 063117 (2012).
[Crossref]

J. Lightwave Technol. (1)

W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol. 7(10), 1461–1465 (1989).
[Crossref]

J. Mol. Struct. (1)

M. Sitarz, W. Mozgawa, and M. Handke, “Rings in the structure of silicate glasses,” J. Mol. Struct. 511-512(511), 281–285 (1999).
[Crossref]

J. Non-Cryst. Solids (3)

T. Y. Wang, J. X. Wen, W. Y. Luo, Z. Y. Xiao, and Z. Y. Chen, “Influences of irradiation on network microstructure of low water peak optical fiber material,” J. Non-Cryst. Solids 356(25-27), 1332–1336 (2010).
[Crossref]

K. Linganna, G. L. Agawane, and J. H. Choi, “Longer lifetime of Er3+/Yb3+ co-doped fluorophosphate glasses for optical amplifier applications,” J. Non-Cryst. Solids 471, 65–71 (2017).
[Crossref]

M. Nalin, P. Marcel, P. Michel, J. L. Sidney, and M. Younes, “Antimony oxide based glasses,” J. Non-Cryst. Solids 284(1-3), 110–116 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

M. Jayasimhadri, L. R. Moorthy, K. Kojima, K. Yamaoto, N. Wada, and N. Wada, “Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers,” J. Phys.: Condens. Matter 17(48), 7705–7715 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. X. Wen, T. Y. Wang, F. F. Pang, X. L. Zeng, Z. Y. Chen, and G. D. Peng, “Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis,” Jpn. J. Appl. Phys. 52(12R), 122501 (2013).
[Crossref]

Laser Phys. Lett. (1)

S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, “Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U−telecommunication band,” Laser Phys. Lett. 14(11), 110001 (2017).
[Crossref]

Mater. Res. Bull. (1)

S. Babu, M. Seshadri, V. R. Prasad, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Er3+ doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers,” Mater. Res. Bull. 70, 935–944 (2015).
[Crossref]

Opt. Commun. (2)

S. Hsu, T. C. Liang, and Y. K. Chen, “Optimal design of optically gain-clamped L-band erbium-doped fiber amplifier,” Opt. Commun. 196(1-6), 149–157 (2001).
[Crossref]

J. F. Li, K. L. Duan, Y. S. Wang, W. Zhao, Y. K. Guo, and X. D. Lin, “Modeling and optimizing of high-concentration erbium-doped fiber amplifiers with consideration of ion-clusters,” Opt. Commun. 277(1), 143–149 (2007).
[Crossref]

Opt. Laser Technol. (1)

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14(4), 189–196 (1982).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer, and G. Kresse, “Hybrid functional applied to rare-earth oxides: The example of ceria,” Phys. Rev. B 75(4), 045121 (2007).
[Crossref]

Phys. Stat. Sol. (a) (1)

V. P. Danilov, A. M. Prokhorov, M. I. Studenikin, D. Schmid, L. O. Schwan, and R. Glasmacher, “Concentration quenching of luminescence from the 2P3/2 level of Er3+ ion in Y3Al5O12 and YAlO3 crystals,” Phys. Stat. Sol. (a) 177(2), 593–600 (2000).
[Crossref]

Phys. Status Solidi RRL (1)

M. Tuomisto, Z. Giedraityte, M. Karppinen, and L. Mika, “Photon up-converting (Yb,Er)2O3 thin films by atomic layer deposition,” Phys. Status Solidi RRL 11(6), 1700076 (2017).
[Crossref]

Proc. SPIE (1)

S. Sergeyev and D. Khoptyar, “Theoretical and experimental study of migration-assisted upconversion in high-concentration erbium doped silica fiber,” Proc. SPIE 6610, 66100L (2007).
[Crossref]

Sci. Rep. (1)

S. L. Kang, X. D. Xiao, Q. W. Pan, D. D. Chen, J. R. Qiu, and G. P. Dong, “Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials,” Sci. Rep. 7(1), 43186 (2017).
[Crossref]

Other (5)

SAT/WASC, Erbium-doped Fiber Amplifier (Springer, 2001).

B. Attaouia and K. Malika, “The effects of concentration quenching and the position of EDFA amplifier on WDM/TDM,” International Conference on Electrical Engineering (2016).

C. M. Xia, G. Y. Zhou, L. T. Hou, and Y Han, “Preparation of Yb3+-doped silica-based glass for high power laser applications,” International Conference on Electronic & Mechanical Engineering & Information Technology. (2011).

X. X. Sun, J. X. Wen, D. Y. Jiang, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Absorption and Microstructure Properties Calculated of Er-doped Silica Fiber Based on DFT Theory,” Asia Communications and Photonics Conference (2016).

Q. Wang, J. X. Wen, F. F. Pang, Z. Y. Chen, Y. H. Luo, G. D. Peng, and T. Y. Wang, “Effect of the Yb3+ on fluorescence lifetime of Er-doped silica optical fiber,” Asia Communications and Photonics Conference, Optical Society of America (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Refraction index difference of the Er/Yb co-doped silica optical fiber.
Fig. 2.
Fig. 2. Absorption and luminescence spectra of different silica optical fibers: (a) Absorption spectra and (b) Luminescence spectra.
Fig. 3.
Fig. 3. Excitation and emission spectra of: (a) Er-doped silica optical fiber and (b) Er/Yb co-doped silica optical fiber.
Fig. 4.
Fig. 4. Luminescence decay curves of: (a) Er-doped silica optical fiber and (b) Yb-doped silica optical fiber.
Fig. 5.
Fig. 5. Luminescence decay curves of Er/Yb co-doped silica optical fiber at: (a) 1033 nm and (b) 1531 nm.
Fig. 6.
Fig. 6. Different doping sites of Er and Yb ions in local structure models
Fig. 7.
Fig. 7. Energy transfer models between Er and Yb ions.

Tables (5)

Tables Icon

Table 1. Weight percentage list of the various silica fibers

Tables Icon

Table 2. Excited state parameters of the Er-3MR local structure model

Tables Icon

Table 3. Excited state parameters of the Yb-3MR local structure model

Tables Icon

Table 4. Energy parameters of different doping sites in the 3MR microstructure model

Tables Icon

Table 5. Excited state parameters of the Er/Yb-3MR local structure model