Abstract

The extraordinary optical properties of single-layer graphene have spurred the development of a variety of photonic components. We have previously demonstrated a scalable and versatile platform to facilitate the integration of graphene and other 2-D materials with chalcogenide glass-based planar photonics. In this paper, we detail the design criteria and optimization guidelines towards high-performance graphene-integrated thermo-optic (TO) switches based on the chalcogenide glass-on-graphene platform. Notably, absorption loss of graphene can be reduced to < 20 dB/cm when it is sandwiched inside photonic structures capitalizing on the anisotropic absorption property of graphene. We quantify energy efficiency of the TO switch, showing that the choice of cladding materials plays a critical role in improving device efficiency. Furthermore, we report a record TO switching efficiency of 10 nm/mW via judicious engineering of the overlap between optical mode and thermal profile.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-power thermo-optic silicon modulator for large-scale photonic integrated systems

SungWon Chung, Makoto Nakai, and Hossein Hashemi
Opt. Express 27(9) 13430-13459 (2019)

Low power consumption thermo-optic switch formed by an integrated processing method

Ming-hui Jiang, Xi-bin Wang, Tian-hang Lian, Dong-hai Niu, Li-lei Wang, Xiao-qiang Sun, Zhi-yong Li, and Da-ming Zhang
Appl. Opt. 58(27) 7375-7378 (2019)

Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform

Maxime Jacques, Alireza Samani, Eslam El-Fiky, David Patel, Zhenping Xing, and David V. Plant
Opt. Express 27(8) 10456-10471 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
    [Crossref]
  2. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26(12), 16022–16043 (2018).
    [Crossref]
  3. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
    [Crossref]
  4. H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
    [Crossref]
  5. C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003).
    [Crossref]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref]
  7. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  8. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
    [Crossref]
  9. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. K. Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
    [Crossref]
  10. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” MRS Online Proceedings Library Archive, 694 (2001).
  11. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
    [Crossref]
  12. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Opt. Lett. 41(4), 836–839 (2016).
    [Crossref]
  13. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach–Zehnder switch,” Opt. Lett. 38(5), 733–735 (2013).
    [Crossref]
  14. K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch,” Opt. Express 24(14), 15845–15853 (2016).
    [Crossref]
  15. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
    [Crossref]
  16. B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25(11), 12109–12120 (2017).
    [Crossref]
  17. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref]
  18. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
    [Crossref]
  19. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
    [Crossref]
  20. M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35(19), 3231–3233 (2010).
    [Crossref]
  21. D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
    [Crossref]
  22. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
    [Crossref]
  23. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
    [Crossref]
  24. X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
    [Crossref]
  25. J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
    [Crossref]
  26. Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref]
  27. J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
    [Crossref]
  28. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
    [Crossref]
  29. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  30. S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
    [Crossref]
  31. L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
    [Crossref]
  32. C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
    [Crossref]
  33. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
    [Crossref]
  34. S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
    [Crossref]
  35. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
    [Crossref]
  36. L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
    [Crossref]
  37. L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
    [Crossref]
  38. J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).
  39. J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
    [Crossref]
  40. D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 µm,” Proc. SPIE 6038, 603821 (2005).
    [Crossref]
  41. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  42. Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
    [Crossref]
  43. M. S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
    [Crossref]

2018 (5)

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26(12), 16022–16043 (2018).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
[Crossref]

2017 (6)

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25(11), 12109–12120 (2017).
[Crossref]

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

2016 (6)

2015 (3)

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

2014 (3)

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

M. S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

2011 (2)

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

2010 (6)

2009 (1)

2007 (1)

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

2005 (2)

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 µm,” Proc. SPIE 6038, 603821 (2005).
[Crossref]

2004 (3)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

2003 (1)

Ahn, J. H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Alosno-Ramos, C.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Andersen, T. B.

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Asghari, M.

Assefa, S.

Bae, S.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Baehr-Jones, T.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Bahadori, M.

Bao, Q.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Barbosa, F. A. S.

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003).
[Crossref]

Bazzaz, H. H.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Bergman, K.

Bono, D.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Bozhevolnyi, S. I.

Bunandar, D.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Campenhout, J. V.

Chen, C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Chen, H.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Chen, J.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Chen, S.

Chen, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Cheng, C.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Cheng, Q.

Choi, B.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Chrostowski, L.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

Cunningham, J. E.

Dai, D.

de Almeida, V. R.

Deckoff-Jones, S.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Dereux, A.

DeRose, C.

Ding, Y.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Dong, J.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Dong, P.

Dresselhaus, M. S.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Du, Q.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Edwards, E.

Ellis, B.

Englund, D.

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[Crossref]

Fainman, Y.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Farrington, N.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Favela, D.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Feng, D.

Ferraro, M. S.

Frandsen, L. H.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Gan, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Gan, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Glick, M.

Gosciniak, J.

Green, W. M. J.

Gu, T.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Hansen, J. K.

Harris, J. S.

Harris, N. C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

He, S.

Hewak, D.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Hochberg, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Hong, B. H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Hong, J. Y.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Huang, B.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Huang, C. C.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Huang, L.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Huang, Y.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Jayatilleka, H.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

Johnson, D. I.

D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 µm,” Proc. SPIE 6038, 603821 (2005).
[Crossref]

Jones, T. B.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Kang, J.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Kim, H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Kim, K. S.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Kim, S. H.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Kim J, Y. J.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Kita, D.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

Kong, J.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Krishnamoorthy, A. V.

Kwon, M. S.

M. S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Lahini, Y.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Laine, J. P.

C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” MRS Online Proceedings Library Archive, 694 (2001).

Lane, P. A.

C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” MRS Online Proceedings Library Archive, 694 (2001).

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Lee, B. S.

Lee, S. K.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Li, C.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Li, G.

Li, J.

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

Li, L.

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Li, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Li, X.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39(4), 751–753 (2014).
[Crossref]

Li, Z.

Liang, H.

Liang, J.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Lin, S.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Lipson, M.

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25(11), 12109–12120 (2017).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003).
[Crossref]

Liu, K.

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Lloyd, S.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Loncar, M.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Lu, Z.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

Luo, Z.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Ma, Y.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Mao, Y.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Markey, L.

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Michon, J.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

Miller, D. A. B.

Miller, S. A.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Miranda, B.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Mohanty, A.

Mortensen, N. A.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Mower, J.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Mu, S.

Murray, K.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

Musgraves, J. D.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Nielson, G. N.

Novak, S.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

O’boyle, M.

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Palacios, T.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Papen, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Porter, G.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Prabhu, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Pruessner, M. W.

Qian, W.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Qiu, C.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Rabinovich, W. S.

Radhakrishnan, S.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Rumley, S.

Sarmiento, T.

Shafiiha, R.

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Shi, Y.

Shin, Y. C.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Shiue, R.

Shiue, R. J.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Smith, C.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Song, Y.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Sorger, V. J.

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Steinbrecher, G. R.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

St-Gelais, R.

Stievater, T. H.

Subramanya, V.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Sui, D.

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Sun, J.

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Tapalian, C.

C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” MRS Online Proceedings Library Archive, 694 (2001).

Town, G. E.

D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 µm,” Proc. SPIE 6038, 603821 (2005).
[Crossref]

Trotter, D. C.

Vahala, K. J.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

Vahdat, A.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Vivien, L.

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Vlasov, Y. A.

J. V. Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
[Crossref]

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Volkov, V. S.

Vuckovic, J.

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Wang, H.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Wang, K.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Wang, S.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Wang, Y.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Watts, M. R.

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

Wong, F. N. C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Wu, K.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Xiao, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Xiao, X.

Xu, H.

Yadav, A.

L. Li, H. Lin, Y. Huang, R. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Yan, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Yang, Y.

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

Yin, Y.

Young, R. W.

Yu, J.

Yu, L.

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159–166 (2016).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

Yu, Y.

Zhan, Y.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Zhang, C.

Zhang, M.

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25(11), 12109–12120 (2017).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Zhang, W.

Zhao, J.

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Zheng, H.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Zhu, X.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Zou, Y.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Zubair, A.

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Adv. Mater. (1)

J. Y. Hong, Y. C. Shin, A. Zubair, Y. Mao, T. Palacios, M. S. Dresselhaus, S. H. Kim, and J. Kong, “A rational strategy for graphene transfer on substrates with rough features,” Adv. Mater. 28(12), 2382–2392 (2016).
[Crossref]

Am. Ceram. Soc. Bull. (1)

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94(4), 24–29 (2015).

Appl. Phys. Lett. (4)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85(22), 5439–5441 (2004).
[Crossref]

L. Yu, D. Dai, and S. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105(25), 251104 (2014).
[Crossref]

IEEE Photonics J. (1)

M. S. Kwon, “Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photonics Technol. Lett. 16(11), 2514–2516 (2004).
[Crossref]

J. Lightwave Technol. (1)

Light: Sci. Appl. (1)

L. Li, H. Lin, S. Qiao, Y. Huang, J. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically Integrated Stretchable Photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Nano Lett. (1)

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim J, B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11(12), 5154–5158 (2011).
[Crossref]

Nanoscale (1)

S. Gan, C. Cheng, Y. Zhan, B. Huang, X. Gan, S. Li, S. Lin, X. Li, J. Zhao, H. Chen, and Q. Bao, “A highly efficient thermo-optic microring modulator assisted by graphene,” Nanoscale 7(47), 20249–20255 (2015).
[Crossref]

Nat. Commun. (2)

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Nat. Photonics (4)

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. B. Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11(7), 447–452 (2017).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C. C. Huang, R. J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Y. A. Vlasov, M. O’boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref]

Opt. Express (7)

K. Liu, C. Zhang, S. Mu, S. Wang, and V. J. Sorger, “Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch,” Opt. Express 24(14), 15845–15853 (2016).
[Crossref]

B. S. Lee, M. Zhang, F. A. S. Barbosa, S. A. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25(11), 12109–12120 (2017).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref]

D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vučković, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters,” Opt. Express 26(12), 16022–16043 (2018).
[Crossref]

M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. K. Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[Crossref]

Opt. Lett. (6)

Optica (3)

Phys. Rev. Lett. (1)

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Proc. SPIE (1)

D. I. Johnson and G. E. Town, “Refractive index and thermo-optic coefficient of composite polymers at 1.55 µm,” Proc. SPIE 6038, 603821 (2005).
[Crossref]

Sci. Rep. (1)

C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, and J. Chen, “All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect,” Sci. Rep. 7(1), 17046 (2017).
[Crossref]

SIGCOMM Comput. Commun. Rev. (1)

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture for modular data centers,” SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010).
[Crossref]

Small (1)

D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7(22), 3186–3192 (2011).
[Crossref]

Other (1)

C. Tapalian, J. P. Laine, and P. A. Lane, “Thermo-optical switches using coated microsphere resonators,” MRS Online Proceedings Library Archive, 694 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Graphene sandwiched design with low optical loss: (a, b) profiles of (a) TE-mode and (b) TM-mode electric-field components Ex, Ey and Ez. The orange and white dashed lines in the figure denote the graphene located underneath and embedded inside the waveguide, respectively. (c) Measured TM-mode transmission spectra of a ring resonator with and without a sandwiched graphene layer. (d) Cut-back optical loss quantification of the fundamental TM mode in a GSS waveguide sitting on a graphene layer.
Fig. 2.
Fig. 2. Schematic fabrication process for the graphene-sandwiched TO switch
Fig. 3.
Fig. 3. Graphene-sandwiched Bragg cavity thermo-optic switches with different top claddings. (a) The structure of graphene-sandwiched Bragg cavity TO switch. The waveguide bridges and crossings connecting the electrodes and the Bragg cavity are shown. (b) Transmission spectra of the Bragg cavity switch surrounded by (b) an index-matching fluid and (c) PMMA under varying input electric power. (d) Resonant peak shift of Bragg-cavity-based TO switches with different dielectric claddings (inset: optical modal field intensity in the center of the cavity submerged in IF).
Fig. 4.
Fig. 4. (a) Schematic diagram of a graphene-sandwiched zero-length photonic crystal cavity TO switch, and an SEM image of the local structure at the center of the cavity. The graphene layer is connected with electrodes in the same manner as the Bragg cavity TO switch. (b) Transmission spectra of photonic crystal cavities with varying number of units N (WPhC_min = 150 nm). (c) Electrical resistances of each mirror unit and the corresponding thermal power generated at each unit (with 10 µA current input) in the graphene-sandwiched cavity with N = 45 and different WPhC_min. The cavity mode profile was also shown at the bottom panel to illustrate the thermal-optical field overlap. The sheet resistance of graphene was taken as 400 ohm/sq following our experimental measurement results. (d) Transmission spectra of the photonic crystal cavity with different WPhC_min (N = 45).
Fig. 5.
Fig. 5. (a) As-measured transmission spectra of an optimized graphene-sandwiched photonic crystal TO switch (WPhC_min = 50 nm, N = 45) with varying input power levels. (b) Measured peak wavelength shift (dots) and fitted energy efficiency (lines) of the photonic crystal TO switches with varying minimum waveguide width WPhC_min (N = 45).

Tables (1)

Tables Icon

Table 1. Comparison of energy efficiency of graphene-sandwiched Bragg-cavity thermo-optic switches surrounded by dielectrics with different thermo-optic coefficients.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W P h C ( i i ) = W P h C _ b + W P h C _ b W P h C _ min N 2 i i 2