Abstract

We report on the synthesis of a new metallic nanoarchitecture, namely, hairy gold nanorods that were carefully designed and engineered the seed-mediated growth of gold nanowires on the sub-nanometer scale gold nanorod substrate. The thickness of the gold nanowires grown could be tuned from 5 to 9 nm by controlling the ratio of HAuCl4 to 4-Mercaptobenzoic acid (MBA) from 2.5 to 25 while the length of gold nanowires could be controlled between 47 nm to 15 µm by varying the concentration of silica coated gold nanorod in the gold solution. The high-aspect-ratio hairy gold nanowires tethered to concentric gold nanorod could be used for fabrication of soft flexible high performance resistive strain sensors and soft surface-enhanced Raman scattering substrate.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]

Jiafang Li, Honglian Guo, and Zhi-Yuan Li
Photon. Res. 1(1) 28-41 (2013)

Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay

Anna V. Alekseeva, Vladimir A. Bogatyrev, Lev A. Dykman, Boris N. Khlebtsov, Lyubov A. Trachuk, Andrei G. Melnikov, and Nikolai G. Khlebtsov
Appl. Opt. 44(29) 6285-6295 (2005)

Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals

Le Dac Tuyen, An Chi Liu, Chia-Chi Huang, Pei-Cheng Tsai, Jian Hung Lin, Chin-Wei Wu, Lai-Kwan Chau, Tzyy Schiuan Yang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu
Opt. Express 20(28) 29266-29275 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [Crossref]
  2. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref]
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref]
  5. P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
    [Crossref]
  6. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  7. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
    [Crossref]
  8. R. Narayanan and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Lett. 4(7), 1343–1348 (2004).
    [Crossref]
  9. H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
    [Crossref]
  10. Y. Tang and W. Cheng, “Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities,” Langmuir 29(9), 3125–3132 (2013).
    [Crossref]
  11. T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
    [Crossref]
  12. A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
    [Crossref]
  13. W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
    [Crossref]
  14. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
    [Crossref]
  15. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
    [Crossref]
  16. T. K. Sau and C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution,” J. Am. Chem. Soc. 126(28), 8648–8649 (2004).
    [Crossref]
  17. Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref]
  18. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
    [Crossref]
  19. N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
    [Crossref]
  20. L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
    [Crossref]
  21. L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
    [Crossref]
  22. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
    [Crossref]
  23. S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
    [Crossref]
  24. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
    [Crossref]
  25. S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
    [Crossref]
  26. S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
    [Crossref]
  27. A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
    [Crossref]
  28. S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
    [Crossref]
  29. Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
    [Crossref]
  30. S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
    [Crossref]
  31. J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
    [Crossref]
  32. Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
    [Crossref]
  33. T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
    [Crossref]
  34. Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
    [Crossref]
  35. B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
    [Crossref]
  36. Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
    [Crossref]
  37. E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
    [Crossref]
  38. Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
    [Crossref]
  39. Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
    [Crossref]
  40. W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
    [Crossref]
  41. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
    [Crossref]
  42. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  43. C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
    [Crossref]
  44. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref]
  45. B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
    [Crossref]
  46. Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
    [Crossref]
  47. I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
    [Crossref]

2019 (7)

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
[Crossref]

2018 (3)

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

2017 (2)

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

2015 (6)

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

2014 (4)

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

2013 (2)

Y. Tang and W. Cheng, “Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities,” Langmuir 29(9), 3125–3132 (2013).
[Crossref]

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

2011 (5)

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

2010 (2)

Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

2009 (1)

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

2008 (2)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

2007 (1)

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

2006 (4)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[Crossref]

2004 (2)

T. K. Sau and C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution,” J. Am. Chem. Soc. 126(28), 8648–8649 (2004).
[Crossref]

R. Narayanan and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Lett. 4(7), 1343–1348 (2004).
[Crossref]

2003 (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2002 (1)

Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

2000 (1)

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[Crossref]

Algadi, H.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Al-Sayari, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Álvarez-Puebla, R. A.

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

An, T.

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Baaziz, W.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Begin-Colin, S.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Bégin-Colin, S.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Bhanushali, S.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

Blom, D. A.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

Cao, Y. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Chen, H.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

Chen, Y.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Chen, Y.-S.

Chen, Z.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Cheng, W.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Y. Tang and W. Cheng, “Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities,” Langmuir 29(9), 3125–3132 (2013).
[Crossref]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

Cho, H. J.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cui, P.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Daimon, H.

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Demortière, A.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Dong, D.

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Donnio, B.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

R. Narayanan and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Lett. 4(7), 1343–1348 (2004).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Emelianov, S.

Fan, J.

N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
[Crossref]

Farrokhtakin, E.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Feng, Y.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Fernández-López, C.

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

Fleutot, S.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Frey, W.

Gan, C. L.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Ganesh, A.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

Gao, Y.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Ghosh, P.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

Gong, S.

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
[Crossref]

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Greneche, J.-M.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Grzelczak, M.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Gu, Z.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Guillon, D.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Guo, P.

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

Ha, Y.-C.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Han, X.

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

Hao, E.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

He, J.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Homan, K.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Jin, R.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

Jing, H.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Katz, E.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kim, D. E.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Kim, S.

Koda, T.

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

Kruizinga, P.

Lai, D. T. H.

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Large, N.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Lee, E.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Lee, H.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Lee, J.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

Lee, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Lee, T.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Lefevre, C.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Li, X.

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

li, Y.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Liang, Y.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

Lin, F.

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Ling, Y.

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Liu, G.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Liu, Q.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Liu, Y.

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Liz-Marzán, L. M.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[Crossref]

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

Ma, Z.

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

Mateo-Mateo, C.

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

Mattoli, V.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Métraux, G. S.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

Mhiri, T.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Min, M.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Mirkin, C. A.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

Moodenbaugh, A. R.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

Murphy, C. J.

T. K. Sau and C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution,” J. Am. Chem. Soc. 126(28), 8648–8649 (2004).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Narayanan, R.

R. Narayanan and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Lett. 4(7), 1343–1348 (2004).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Nordlander, P.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Obelleiro, F.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Onodera, T.

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Panissod, P.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Papaefthymiou, G. C.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

Park, T.-J.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

Pastoriza-Santos, I.

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[Crossref]

Pérez-Juste, J.

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[Crossref]

Petkovic, K.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

Pichon, B. P.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Pourroy, G.

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

Premaratne, M.

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Qi, X.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Qin, Y.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Rathmell, A. R.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

Rodríguez-Fernández, D.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Sau, T. K.

T. K. Sau and C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution,” J. Am. Chem. Soc. 126(28), 8648–8649 (2004).
[Crossref]

Schatz, G. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Schwalb, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Seo, J.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Seo, S.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Shi, D.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Shi, Q.

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Shin, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Shipway, A. N.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[Crossref]

Shirinzadeh, B.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Si, J.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Si, K. J.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

Sikdar, D.

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Simon, G. P.

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Sokolov, K.

Solís, D. M.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Son, S.

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Stewart, I. E.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Stucky, G. D.

N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
[Crossref]

Su, B.

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

Sun, S.

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref]

Suzuki, K.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Taboada, J. M.

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

Tang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Y. Tang and W. Cheng, “Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities,” Langmuir 29(9), 3125–3132 (2013).
[Crossref]

Tang, Z.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

Teo, W. S.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Toumi, M.

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Uddin, H.

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Viescas, A. J.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

Wang, C.

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Wang, H.

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Wang, J.

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

Wang, L.

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Wang, S. J.

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Wang, Y.

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Wiley, B. J.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

Willner, I.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[Crossref]

Wilson, A. R.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Wong, S. S.

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

Xia, Y.

Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref]

Xiong, W.

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Yang, J.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Yang, M.

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

Yang, X.

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

Yap, L. W.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Ye, S.

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Yu, C.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Zeng, Z.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Zhai, Q.

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

Zhang, H.

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Zhang, Q.

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, Y.

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Zheng, N.

N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
[Crossref]

Zhu, B.

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
[Crossref]

Zhu, C.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

Zhu, Y.

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

Zu, L.

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

ACS Nano (3)

P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, “Nonvolatile Memory Device Using Gold Nanoparticles Covalently Bound to Reduced Graphene Oxide,” ACS Nano 5(9), 6826–6833 (2011).
[Crossref]

Y. Wang, S. Gong, S. J. Wang, X. Yang, Y. Ling, L. W. Yap, D. Dong, G. P. Simon, and W. Cheng, “Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics,” ACS Nano 12(10), 9742–9749 (2018).
[Crossref]

J. He, Y. Wang, Y. Feng, X. Qi, Z. Zeng, Q. Liu, W. S. Teo, C. L. Gan, H. Zhang, and H. Chen, “Forest of Gold Nanowires: A New Type of Nanocrystal Growth,” ACS Nano 7(3), 2733–2740 (2013).
[Crossref]

Adv. Electron. Mater. (3)

B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, “Patterning Vertically-Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors,” Adv. Electron. Mater. 5(1), 1800509 (2019).
[Crossref]

S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, “Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors,” Adv. Electron. Mater. 1(4), 1400063 (2015).
[Crossref]

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

Adv. Funct. Mater. (1)

S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. J. Cho, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee, “Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics,” Adv. Funct. Mater. 25(21), 3114–3121 (2015).
[Crossref]

Adv. Mater. (2)

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template,” Adv. Mater. 13(18), 1389–1393 (2001).
[Crossref]

Adv. Mater. Technol. (1)

T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang, and W. Cheng, “A Wearable Second Skin-Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline,” Adv. Mater. Technol. 4(3), 1800473 (2019).
[Crossref]

Anal. Chem. (2)

Q. Zhai, Y. Wang, S. Gong, Y. Ling, L. W. Yap, Y. Liu, J. Wang, G. P. Simon, and W. Cheng, “Vertical Gold Nanowires Stretchable Electrochemical Electrodes,” Anal. Chem. 90(22), 13498–13505 (2018).
[Crossref]

Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, and W. Cheng, “Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat,” Anal. Chem. 91(10), 6569–6576 (2019).
[Crossref]

Angew. Chem. (1)

C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, “A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,” Angew. Chem. 47(19), 3588–3591 (2008).
[Crossref]

Chem. Commun. (1)

S. Ye, A. R. Rathmell, I. E. Stewart, Y.-C. Ha, A. R. Wilson, Z. Chen, and B. J. Wiley, “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem. Commun. 50(20), 2562–2564 (2014).
[Crossref]

Chem. Mater. (2)

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, and L. M. Liz-Marzán, “Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in Strongly Coupled Metallic Nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref]

Chem. Soc. Rev. (1)

B. Zhu, S. Gong, and W. Cheng, “Softening gold for elastronics,” Chem. Soc. Rev. 48(6), 1668–1711 (2019).
[Crossref]

ChemPhysChem (1)

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[Crossref]

ChemPlusChem (1)

Z. Zhang, L. W. Yap, D. Dong, Q. Shi, Y. Wang, W. Cheng, and X. Han, “Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors,” ChemPlusChem 84(8), 1030 (2019).
[Crossref]

Inorg. Chem. Commun. (1)

L. W. Yap, Q. Shi, S. Gong, Y. Wang, Y. Chen, C. Zhu, Z. Gu, K. Suzuki, Y. Zhu, and W. Cheng, “Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor,” Inorg. Chem. Commun. 104, 98–104 (2019).
[Crossref]

J. Am. Chem. Soc. (2)

N. Zheng, J. Fan, and G. D. Stucky, “One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals,” J. Am. Chem. Soc. 128(20), 6550–6551 (2006).
[Crossref]

T. K. Sau and C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution,” J. Am. Chem. Soc. 126(28), 8648–8649 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

E. Farrokhtakin, D. Rodríguez-Fernández, V. Mattoli, D. M. Solís, J. M. Taboada, F. Obelleiro, M. Grzelczak, and L. M. Liz-Marzán, “Radial growth of plasmon coupled gold nanowires on colloidal templates,” J. Colloid Interface Sci. 449, 87–91 (2015).
[Crossref]

J. Phys. Chem. B (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J.-M. Greneche, M. Toumi, T. Mhiri, and S. Begin-Colin, “Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting,” J. Phys. Chem. C 118(7), 3795–3810 (2014).
[Crossref]

Langmuir (3)

Y. Tang and W. Cheng, “Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities,” Langmuir 29(9), 3125–3132 (2013).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref]

C. Fernández-López, C. Mateo-Mateo, R. A. Álvarez-Puebla, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles,” Langmuir 25(24), 13894–13899 (2009).
[Crossref]

Nano Lett. (3)

T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles,” Nano Lett. 7(3), 766–772 (2007).
[Crossref]

R. Narayanan and M. A. El-Sayed, “Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution,” Nano Lett. 4(7), 1343–1348 (2004).
[Crossref]

H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, and H. Wang, “Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets,” Nano Lett. 14(6), 3674–3682 (2014).
[Crossref]

Nanoscale (3)

A. Demortière, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Bégin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3(1), 225–232 (2011).
[Crossref]

L. W. Yap, H. Chen, Y. Gao, K. Petkovic, Y. Liang, K. J. Si, H. Wang, Z. Tang, Y. Zhu, and W. Cheng, “Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay,” Nanoscale 9(23), 7822–7829 (2017).
[Crossref]

W. Xiong, D. Sikdar, L. W. Yap, M. Premaratne, X. Li, and W. Cheng, “Multilayered Core–satellite Nanoassemblies with Finely-Tunable Broadband Plasmon Resonances,” Nanoscale 7(8), 3445–3452 (2015).
[Crossref]

Nanoscale Horiz. (1)

S. Gong, Y. Wang, L. W. Yap, Y. Ling, Y. Zhao, D. Dong, Q. Shi, Y. Liu, H. Uddin, and W. Cheng, “A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches,” Nanoscale Horiz. 3(6), 640–647 (2018).
[Crossref]

Nat. Commun. (1)

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (1)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref]

Nature (1)

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref]

Opt. Express (1)

Part. Part. Syst. Charact. (1)

Y. li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang, “Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors,” Part. Part. Syst. Charact. 32(4), 498–504 (2015).
[Crossref]

Science (2)

Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref]

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Small (2)

Y. Ling, S. Gong, Q. Zhai, Y. Wang, Y. Zhao, M. Yang, and W. Cheng, “Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition,” Small 15(13), 1804853 (2019).
[Crossref]

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures,” Small 11(11), 1232–1252 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic illustration of the synthesis of Hairy Gold Nanorod particle.
Fig. 2.
Fig. 2. TEM characterization of (a) gold nanorod, (b) gold nanorod coated with SiO2, (c) gold nanorod with ∼2 nm gold nanoparticle seed and (d) gold nanowires grown on the silica coated gold nanorod, also known as hairy gold nanorod.
Fig. 3.
Fig. 3. (a) UV-Vis spectra in process synthesis of HGNR, (b) UV-Vis spectra of HGNR growth.
Fig. 4.
Fig. 4. TEM images of (a) whole HGNR (b) NR core. (c) HRTEM image of silica shell and nanowire root interface region. Inset is a selected area electron diffraction pattern of HGNR, showing the (111), (200), (220) and (311) reflections of gold.
Fig. 5.
Fig. 5. The length of nanowire tuned by changing the mole ratio between HAuCl4 and nanorod. Insets are the corresponding SEM images of various length nanowires.
Fig. 6.
Fig. 6. (a) Possible mechanism of HGNR film before and under strain. (b) Resistance-time characteristics of the sample’s stretchability test for three applied strain (1%, 5% and 10%). (Input voltage: 1V; frequency: 0.5 Hz) (c) The durability test under a strain of 5% at a frequency of 0.5 Hz. The resistance change curves were recorded after each 500 cycles and 50 cycles of data was presented in each recording.
Fig. 7.
Fig. 7. (a) SERS spectra of benzocaine on HGNR and GNR substrate in their unstretched and stretched state (b) SERS signal intensity of benzocaine analyte at 1604 cm-1.
Fig. 8.
Fig. 8. SEM images of (a) HGNR, (b) zoom in nanorod core.
Fig. 9.
Fig. 9. SEM images of HGNR with (a) super long nanowires and (b) high density nanowires.
Fig. 10.
Fig. 10. (a, b, c, d) HRTEM images of four continuous parts along a typical nanowire started at silica shell. Inset is the overall view of the HGNR.
Fig. 11.
Fig. 11. SEM images of gold nanowires grew at different mole ratio of HAuCl4 to MBA. The molar ratio of HAuCl4 and MBA is at (a) 1.25, (b) 2.5, (c) 25, (d) 75 and (e) 3. The nanowire could be grew in the ratio range 2.5 to 25, however, they cannot grow when the ratio at 1.25 and 70.
Fig. 12.
Fig. 12. SEM image of nanoparticles obtained from seed growth without silica substrate, under otherwise the same reaction conditions as for Fig. 8.
Fig. 13.
Fig. 13. (a)-(c) Optical images of the morphology of HGNRs thin film at 0% strain (a), at 10% strain (b), and back to 0% strain (c). (d) An enlarged image of (b) indicating the formation of cracks upon stretching.
Fig. 14.
Fig. 14. (a) The sheet resistance of L-HGNRs, M-HGNRs, and S-HGNRs thin film, respectively. (b) The relationship between the applied strain and the resistance changes of L-HGNRs, M-HGNRs, and S-HGNRs thin film, respectively.

Tables (1)

Tables Icon

Table 1. The concentration of gold precursor (HAuCl4) and ligand (MBA) and their mole ratio in the growth solution.