Abstract

Colour centres in nanodiamonds provide robust sources of fluorescence and can be used as triggered sources of single photons at room temperature. However, practical devices require stability over thousands of hours of operation, and the use of strong pulsed optical excitation, placing significant burden on the robustness of the emitters that requires bespoke testing. In this work we report the response of single NV centres in nanodiamonds of 50 nm and 100 nm diameter to accelerated lifetime testing, exciting the defects close to saturation around 1013 times to simulate the minimum operational lifetime of a practical device. For nanodiamonds 50 nm in diameter, observed changes in the fluorescence intensity and lifetime suggest a progressive size reduction as a result of the pulsed laser excitation, combined with the introduction of non-radiative centres on or near the nanodiamond surface which affect the quantum efficiency of the NV centre and ultimately lead to photobleaching of the emission. We find examples of NV centres in 100 nm nanodiamonds for which triggered single photon emission remains stable for over these accelerated lifetime tests, demonstrating their suitability for use in practical devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity

P. R. Dolan, S. Adekanye, A. A. P. Trichet, S. Johnson, L. C. Flatten, Y. C. Chen, L. Weng, D. Hunger, H.-C. Chang, S. Castelletto, and J. M. Smith.
Opt. Express 26(6) 7056-7065 (2018)

Lifetime investigation of single nitrogen vacancy centres in nanodiamonds

Jelle Storteboom, Philip Dolan, Stefania Castelletto, Xiangping Li, and Min Gu
Opt. Express 23(9) 11327-11333 (2015)

Towards a picosecond transform-limited nitrogen-vacancy based single photon source

Chun-Hsu Su, Andrew D. Greentree, and Lloyd C. L. Hollenberg
Opt. Express 16(9) 6240-6250 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
    [Crossref]
  2. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
    [Crossref]
  3. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
    [Crossref]
  4. I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
    [Crossref]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
    [Crossref]
  6. A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
    [Crossref]
  7. P. R. Dolan, S. Adekanye, A. A. P. Trichet, S. Johnson, L. C. Flatten, Y. C. Chen, L. Weng, D. Hunger, H.-C. Chang, S. Castelletto, and J. M. Smith., “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Express 26(6), 7056–7065 (2018).
    [Crossref]
  8. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
    [Crossref]
  9. A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
    [Crossref]
  10. F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
    [Crossref]
  11. F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
    [Crossref]
  12. A. Mohtashami and A. Femius Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15(4), 043017 (2013).
    [Crossref]
  13. C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
    [Crossref]
  14. I. P. Radko, M. Boll, N. M. Israelsen, N. Raatz, J. Meijer, F. Jelezko, U. L. Andersen, and A. Huck, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Express 24(24), 27715 (2016).
    [Crossref]
  15. F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
    [Crossref]
  16. E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
    [Crossref]
  17. S. F. Lee and M. A. Osborne, “Brightening, blinking, bluing and bleaching in the life of a quantum dot: Friend or foe?” ChemPhysChem 10(13), 2174–2191 (2009).
    [Crossref]
  18. H. Chang, W. Hsiao, and M. Su, Hybrid Fluorescent Nanodiamonds, 1 (Wiley, 2018), 1st ed.
  19. S. Johnson, “The Coupling of Nitrogen-Vacancy Centres in Diamond to tunable Open-Microcavities,” Ph.D. thesis, University of Oxford (2018).
  20. J. Storteboom, P. Dolan, S. Castelletto, X. Li, and M. Gu, “Lifetime investigation of single nitrogen vacancy centres in nanodiamonds,” Opt. Express 23(9), 11327 (2015).
    [Crossref]
  21. V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
    [Crossref]
  22. A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
    [Crossref]
  23. M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
    [Crossref]
  24. V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
    [Crossref]
  25. V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
    [Crossref]

2018 (2)

2017 (2)

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

2016 (2)

I. P. Radko, M. Boll, N. M. Israelsen, N. Raatz, J. Meijer, F. Jelezko, U. L. Andersen, and A. Huck, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Express 24(24), 27715 (2016).
[Crossref]

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

2015 (2)

J. Storteboom, P. Dolan, S. Castelletto, X. Li, and M. Gu, “Lifetime investigation of single nitrogen vacancy centres in nanodiamonds,” Opt. Express 23(9), 11327 (2015).
[Crossref]

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

2014 (3)

F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
[Crossref]

E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
[Crossref]

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

2013 (3)

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

A. Mohtashami and A. Femius Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15(4), 043017 (2013).
[Crossref]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

2011 (3)

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

2009 (2)

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

S. F. Lee and M. A. Osborne, “Brightening, blinking, bluing and bleaching in the life of a quantum dot: Friend or foe?” ChemPhysChem 10(13), 2174–2191 (2009).
[Crossref]

2007 (1)

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

1997 (1)

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

Adekanye, S.

Aharonovich, I.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Ali, S.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Andersen, U. L.

Barker, P. F.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Barnard, A. S.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

Becher, C.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Birks, T. A.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Boll, M.

Borczyskowski, C. V.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Bose, S.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Bradac, C.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

Castelletto, S.

P. R. Dolan, S. Adekanye, A. A. P. Trichet, S. Johnson, L. C. Flatten, Y. C. Chen, L. Weng, D. Hunger, H.-C. Chang, S. Castelletto, and J. M. Smith., “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Express 26(6), 7056–7065 (2018).
[Crossref]

J. Storteboom, P. Dolan, S. Castelletto, X. Li, and M. Gu, “Lifetime investigation of single nitrogen vacancy centres in nanodiamonds,” Opt. Express 23(9), 11327 (2015).
[Crossref]

F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
[Crossref]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Chang, H.

H. Chang, W. Hsiao, and M. Su, Hybrid Fluorescent Nanodiamonds, 1 (Wiley, 2018), 1st ed.

Chang, H.-C.

Chen, Y. C.

Chew, H.

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

Chung, K.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Ciuba, M. A.

E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
[Crossref]

Dolan, P.

Dolan, P. R.

Dra, A.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Edmonds, A. M.

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

Efetov, D. K.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Englund, D.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Femius Koenderink, A.

A. Mohtashami and A. Femius Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15(4), 043017 (2013).
[Crossref]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Flatten, L. C.

Fleury, L.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Ford, M. J.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Frangeskou, A. C.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Furchi, M. M.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Gaebel, T.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

Gibson, B. C.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Gololobov, V. M.

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

Grangier, P.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Greentree, A. D.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Grogan, M. D.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Grosso, G.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Gruber, A.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Gu, M.

Hsiao, W.

H. Chang, W. Hsiao, and M. Su, Hybrid Fluorescent Nanodiamonds, 1 (Wiley, 2018), 1st ed.

Huck, A.

Hunger, D.

Inam, F. A.

F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
[Crossref]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

Israelsen, N. M.

Jarillo-Herrero, P.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Jelezko, F.

Johnson, S.

Karle, T. J.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Khalid, A.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Khomich, A. A.

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Kim, M. S.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Komlenok, M. S.

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Kononenko, T. V.

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Kononenko, V. V.

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Konov, V. I.

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Krivobok, V. S.

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

Lau, D. W.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Lee, S. F.

S. F. Lee and M. A. Osborne, “Brightening, blinking, bluing and bleaching in the life of a quantum dot: Friend or foe?” ChemPhysChem 10(13), 2174–2191 (2009).
[Crossref]

Levitus, M.

E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
[Crossref]

Li, X.

Lienhard, B.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

Meijer, J.

Mohtashami, A.

A. Mohtashami and A. Femius Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15(4), 043017 (2013).
[Crossref]

Moon, H.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

Morley, G. W.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Naidoo, N.

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Osborne, M. A.

S. F. Lee and M. A. Osborne, “Brightening, blinking, bluing and bleaching in the life of a quantum dot: Friend or foe?” ChemPhysChem 10(13), 2174–2191 (2009).
[Crossref]

Pimenov, S. M.

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Raatz, N.

Rabeau, J. R.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Radko, I. P.

Rahman, A. T.

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Rajasekharan, R.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Ralchenko, V. G.

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Roch, J. F.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Roger, G.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Rollings, M.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Say, J. M.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Semenov, T. A.

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Shershulin, V. A.

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Smith., J. M.

Steel, M. J.

F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
[Crossref]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

Stennett, E. M.

E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
[Crossref]

Storteboom, J.

Su, C. H.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Su, M.

H. Chang, W. Hsiao, and M. Su, Hybrid Fluorescent Nanodiamonds, 1 (Wiley, 2018), 1st ed.

Tietz, C.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Tomljenovic-Hanic, S.

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

Treussart, F.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Trichet, A. A. P.

Vlasov, I. I.

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

Wadsworth, W. J.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

Weng, L.

Wrachtrup, J.

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Wu, E.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

Zavedeev, E. V.

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

Zeng, H.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

ACS Nano (1)

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment,” ACS Nano 7(5), 3833–3843 (2013).
[Crossref]

Appl. Phys. A (1)

V. V. Kononenko, I. I. Vlasov, E. V. Zavedeev, A. A. Khomich, and V. I. Konov, “Correlation between surface etching and NV centre generation in laser-irradiated diamond,” Appl. Phys. A 124(3), 226 (2018).
[Crossref]

Appl. Phys. Lett. (2)

V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111(8), 081101 (2017).
[Crossref]

F. A. Inam, A. M. Edmonds, M. J. Steel, and S. Castelletto, “Tracking emission rate dynamics of nitrogen vacancy centers in nanodiamonds,” Appl. Phys. Lett. 102(25), 253109 (2013).
[Crossref]

Chem. Soc. Rev. (1)

E. M. Stennett, M. A. Ciuba, and M. Levitus, “Photophysical processes in single molecule organic fluorescent probes,” Chem. Soc. Rev. 43(4), 1057–1075 (2014).
[Crossref]

ChemPhysChem (1)

S. F. Lee and M. A. Osborne, “Brightening, blinking, bluing and bleaching in the life of a quantum dot: Friend or foe?” ChemPhysChem 10(13), 2174–2191 (2009).
[Crossref]

Diamond Relat. Mater. (1)

F. A. Inam, M. J. Steel, and S. Castelletto, “Effects of the hosting nano-environment modifications on NV centres fluorescence emission,” Diamond Relat. Mater. 45, 64–69 (2014).
[Crossref]

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87(2), 1355–1360 (1987).
[Crossref]

Nano Lett. (1)

C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, “Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale,” Nano Lett. 9(10), 3555–3564 (2009).
[Crossref]

Nat. Commun. (1)

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8(1), 705 (2017).
[Crossref]

New J. Phys. (3)

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J. F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9(12), 434 (2007).
[Crossref]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[Crossref]

A. Mohtashami and A. Femius Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15(4), 043017 (2013).
[Crossref]

Opt. Express (3)

Phys. Procedia (1)

M. S. Komlenok, V. V. Kononenko, V. G. Ralchenko, S. M. Pimenov, and V. I. Konov, “Laser induced nanoablation of diamond materials,” Phys. Procedia 12, 37–45 (2011).
[Crossref]

Phys. Rev. Lett. (1)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[Crossref]

Quantum Electron. (1)

V. V. Kononenko, V. I. Konov, V. M. Gololobov, and E. V. Zavedeev, “Propagation and absorption of high-intensity femtosecond laser radiation in diamond,” Quantum Electron. 44(12), 1099–1103 (2014).
[Crossref]

Rep. Prog. Phys. (1)

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Sci. Rep. (2)

A. Khalid, K. Chung, R. Rajasekharan, D. W. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, “Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification,” Sci. Rep. 5(1), 11179 (2015).
[Crossref]

A. T. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley, and P. F. Barker, “Burning and graphitization of optically levitated nanodiamonds in vacuum,” Sci. Rep. 6(1), 21633 (2016).
[Crossref]

Science (1)

A. Gruber, A. Dra, C. Tietz, L. Fleury, J. Wrachtrup, and C. V. Borczyskowski, “Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers,” Science 276(5321), 2012–2014 (1997).
[Crossref]

Other (2)

H. Chang, W. Hsiao, and M. Su, Hybrid Fluorescent Nanodiamonds, 1 (Wiley, 2018), 1st ed.

S. Johnson, “The Coupling of Nitrogen-Vacancy Centres in Diamond to tunable Open-Microcavities,” Ph.D. thesis, University of Oxford (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic outlining accelerated lifetime testing measurement cycle. 30 second 5 MHz time-resolved photo-luminescence measurement performed at 20 minute intervals, Gaussian peak-find focus, Hanbury Brown and Twiss measurements, and Spectrographs performed at 4 minute intervals.
Fig. 2.
Fig. 2. Single photon emission under pulsed excitation. A: 5 MHz pulsed photon correlation measurement of a single NV centre in nanodiamond showing strong photon anti-bunching. B: Measured fluorescence intensity as a function of laser power at 80 MHz, consisting of linear background and asymptotic NV response. The excitation power used is sufficient to achieve NV centre emission saturation.
Fig. 3.
Fig. 3. Lifetime distributions of nanodiamond samples before extended exposure. A: 50 nm sample, n=30, mean=34.8ns, range=77.1 ns. B: 100 nm sample, n=29, mean=32.6 ns, range=33.2 ns.
Fig. 4.
Fig. 4. Fluorescence decay dynamics of a 50 nm nanodiamond NV1 A: Variation in count rate and lifetime over 140 minutes of 80 MHz pulsed exposure revealing reduction in both lifetime and count rate. Measurement cycle outlined in Fig. 1. B: TRPL curves before(yellow) and after(purple) 120 minutes of pulsed excitation. $\tau _{before}$ = 90.1 ns, $\tau _{after}$ = 20.0 ns.
Fig. 5.
Fig. 5. Fluorescence decay dynamics of a 50 nm nanodiamond NV2. A: Variation in count rate and lifetime over 140 hours of 80 MHz pulsed exposure. Demonstrates comparably greater stability compared to NV1. Measured lifetime increases overall from 47.7 ns to 61.5 ns, 5 MHz count rate decreases by over 50%. Increase in emission instability over time (seen as scatter). B: Division of measured lifetime and count rate, approximately proportional to radiative lifetime, which progressively increases over experiment duration.
Fig. 6.
Fig. 6. Short term emission instability of NV2 following extended excitation. Simultaneous TRPL and count trace measurements taken. A: Four, of 184, 30 second traces from NV2. B: Measured TRPL during exposure period of traces in A. Predicted decay curve by integral sum of decay components from corresponding trace shown in green. C: Schematic of measurement cycle under 5 MHz excitation. D: Count rate level and corresponding fitted lifetime show linear correlation. Background count rate = 6786s$^{-1}$. gradient $(I - I_{bkg})/\tau _{rad}=280.7$.
Fig. 7.
Fig. 7. Stability in fluorescence decay dynamics for two 100 nm nanodiamond hosted NV centres. NV3 and NV4, demonstrate less than 10% variation in measured lifetime and stable emission over 62.5 hours of 80 MHz pulsed excitation.