Abstract

We demonstrate the synthesis of gold nanoparticles in tetrahydrofuran using the pulsed laser ablation technique. Both ablation time and solution stirring effect were investigated. At an ablation time of 30 minutes, the average size of synthesized gold nanoparticles significantly reduced from 11 nm to 6 nm. Additionally, the percentage of gold nanoparticles greater than 15 nm reduced as well, from 20.00% to 0.47%. These observations were caused by forced convection flow and shock waves from the rapid laser pulse that fragmented the ablated gold nanoparticles further into smaller sizes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

Femtosecond laser induced synthesis of Au nanoparticles mediated by chitosan

P. H. D. Ferreira, M. G. Vivas, L. De Boni, D. S. dos Santos, D. T. Balogh, L. Misoguti, and C. R. Mendonca
Opt. Express 20(1) 518-523 (2012)

Ultrafast laser ablation of trapped gold nanoparticles

Javier Hernandez-Rueda, Anne de Beurs, and Dries van Oosten
Opt. Lett. 44(13) 3294-3297 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Wypych, Handbook of Solvents, Volume 1: Properties (ChemTec, 2014).
  2. E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, 2009).
  3. D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
    [Crossref]
  4. S. K. Jewrajka and U. Chatterjee, “Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer-gold nanocomposites,” J. Polym. Sci., Part A: Polym. Chem. 44(6), 1841–1854 (2006).
    [Crossref]
  5. L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
    [Crossref]
  6. J. Polte, “Fundamental growth principles of colloidal metal nanoparticles – A new perspective,” CrystEngComm 17(36), 6809–6830 (2015).
    [Crossref]
  7. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
    [Crossref]
  8. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
    [Crossref]
  9. P. R. Chandran and R. T. Thomas, “Gold nanoparticles in cancer drug delivery,” in Nanotechnology Applications for Tissue Engineering, S. Thomas, Y. Grohens, and N. Ninan, eds. (Elsevier, 2015).
  10. V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
    [Crossref]
  11. A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
    [Crossref]
  12. C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
    [Crossref]
  13. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
    [Crossref]
  14. X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
    [Crossref]
  15. D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
    [Crossref]
  16. M. Vinod and K. G. Gopchandran, “Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates,” Prog. Nat. Sci. 24(6), 569–578 (2014).
    [Crossref]
  17. V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
    [Crossref]
  18. V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
    [Crossref]
  19. H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
    [Crossref]
  20. J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
    [Crossref]
  21. L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
    [Crossref]
  22. J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
    [Crossref]
  23. L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
    [Crossref]
  24. A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
    [Crossref]
  25. A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
    [Crossref]
  26. S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
    [Crossref]
  27. M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
    [Crossref]
  28. A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
    [Crossref]
  29. J. Coates, “Interpretation of infrared spectra, A practical approach,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Meyers, ed. (John Wiley & Sons, 2006).
  30. A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
    [Crossref]
  31. J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
    [Crossref]
  32. S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).
  33. F. Taccogna, “Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid,” J. Plasma Phys. 81(5), 495810509 (2015).
    [Crossref]
  34. R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
    [Crossref]
  35. S. E. Black, Laser Ablation: Effects and Applications (Nova Science Publisher, 2011).
  36. A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
    [Crossref]
  37. A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).
  38. A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
    [Crossref]
  39. K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
    [Crossref]
  40. M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
    [Crossref]
  41. G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
    [Crossref]
  42. P. Boyer and M. Meunier, “Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes,” J. Phys. Chem. C 116(14), 8014–8019 (2012).
    [Crossref]
  43. Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
    [Crossref]

2019 (2)

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

2018 (3)

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

2017 (5)

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
[Crossref]

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

2016 (2)

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

2015 (4)

J. Polte, “Fundamental growth principles of colloidal metal nanoparticles – A new perspective,” CrystEngComm 17(36), 6809–6830 (2015).
[Crossref]

F. Taccogna, “Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid,” J. Plasma Phys. 81(5), 495810509 (2015).
[Crossref]

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
[Crossref]

2014 (3)

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

M. Vinod and K. G. Gopchandran, “Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates,” Prog. Nat. Sci. 24(6), 569–578 (2014).
[Crossref]

2013 (3)

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref]

2012 (2)

P. Boyer and M. Meunier, “Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes,” J. Phys. Chem. C 116(14), 8014–8019 (2012).
[Crossref]

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

2011 (2)

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

2010 (2)

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

2009 (2)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

2008 (1)

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

2007 (1)

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

2006 (3)

D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
[Crossref]

S. K. Jewrajka and U. Chatterjee, “Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer-gold nanocomposites,” J. Polym. Sci., Part A: Polym. Chem. 44(6), 1841–1854 (2006).
[Crossref]

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
[Crossref]

2005 (1)

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Aaryashree, P.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Abarques, R.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Abderrafi, K.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Abdul Rashid, S.

A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
[Crossref]

A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).

Algorri, J. F.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Alizadeh, F.

A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).

Amendola, V.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
[Crossref]

Ang, A. S.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Awasthi, V.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Baboo, V.

A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
[Crossref]

Badertscher, M.

E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, 2009).

Bajpai, A.

A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
[Crossref]

Balan, L.

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

Bao, R.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Barcikowski, S.

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref]

Battie, Y.

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

Berry, K. R.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

Black, S. E.

S. E. Black, Laser Ablation: Effects and Applications (Nova Science Publisher, 2011).

Bowron, D. T.

D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
[Crossref]

Boyer, P.

P. Boyer and M. Meunier, “Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes,” J. Phys. Chem. C 116(14), 8014–8019 (2012).
[Crossref]

Bühlmann, P.

E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, 2009).

Bunschoten, A.

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

Burget, D.

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

Calzada, R. G.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Caño-García, M.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Cao, Q.

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

Caruso, A. N.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Cataliotti, R. S.

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Chaker, M.

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

Chandran, P. R.

P. R. Chandran and R. T. Thomas, “Gold nanoparticles in cancer drug delivery,” in Nanotechnology Applications for Tissue Engineering, S. Thomas, Y. Grohens, and N. Ninan, eds. (Elsevier, 2015).

Chaoui, N.

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

Chatterjee, U.

S. K. Jewrajka and U. Chatterjee, “Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer-gold nanocomposites,” J. Polym. Sci., Part A: Polym. Chem. 44(6), 1841–1854 (2006).
[Crossref]

Chen, J.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

Chen, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Cheng, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Chiba, R.

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

Chirvony, V. S.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Chrisey, D. B.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Coates, J.

J. Coates, “Interpretation of infrared spectra, A practical approach,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Meyers, ed. (John Wiley & Sons, 2006).

Compagnini, G.

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref]

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Correia, R. R. B.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Daniel, W. L.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Dinu, C. Z.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Dunklin, J. R.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

Dupont, J.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Dwivedi, A.

A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
[Crossref]

Ebeling, G.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

En Naciri, A.

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

Finney, J. L.

D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
[Crossref]

Forcherio, G. T.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

García-Cámara, B.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Garg, V.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Geday, M. A.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Gelesky, M. A.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Giaquinta, G.

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Gil, P. R.

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Giljohann, D. A.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Gong, S.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Gongalsky, M. B.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Gopchandran, K. G.

M. Vinod and K. G. Gopchandran, “Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates,” Prog. Nat. Sci. 24(6), 569–578 (2014).
[Crossref]

Grillo, A.

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Gu, Y.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

Guo, L.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Hao, C.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Hao, X.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Hasegawa, J.

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

Hassan, S.

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

Higashi, H.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Horioka, K.

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

Hou, W.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Huang, Y.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Ibanez, R.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Ishikawa, Y.

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

Jewrajka, S. K.

S. K. Jewrajka and U. Chatterjee, “Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer-gold nanocomposites,” J. Polym. Sci., Part A: Polym. Chem. 44(6), 1841–1854 (2006).
[Crossref]

Karabchevsky, A.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Kim, M.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Kim, T.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Koch, A.

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

Kool, L.

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

Koshizaki, N.

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

Kumar, S.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Li, C.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

Li, D. X.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Li, J.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Li, T.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Li, X.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

Liang, S.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Liu, J.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Liu, N.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Liu, X.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Ma, D.

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

Machado, G.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Magno, W. C.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Mahdi, M. A.

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).

Malval, J. P.

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

Mamdoohi, G.

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

Margot, J.

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

Martinez-Pastor, J. P.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Massich, M. D.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Meneghetti, M.

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
[Crossref]

Messina, E.

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Meunier, M.

P. Boyer and M. Meunier, “Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes,” J. Phys. Chem. C 116(14), 8014–8019 (2012).
[Crossref]

Minin, I. V.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Minin, O. V.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Mirkin, C. A.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Moksin, M. M.

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

Morais, J.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Mu, X.

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

Mukherjee,

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Mukherjee, S.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Muneoka, H.

S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).

Noor, A. S. M.

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

Osone, S.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Otón, J. F.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Parak, W.

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Patel, P. C.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Polizzi, S.

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
[Crossref]

Polte, J.

J. Polte, “Fundamental growth principles of colloidal metal nanoparticles – A new perspective,” CrystEngComm 17(36), 6809–6830 (2015).
[Crossref]

Poudereux, D.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Pretsch, E.

E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, 2009).

Pyatenko, A.

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

Qadri, S. B.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Quintana, X.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Rashid, S. A.

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

Resano-Garcia, A.

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

Riabinina, D.

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

Roper, D. K.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

Sadrolhosseini, A. R.

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
[Crossref]

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).

Saggiomo, V.

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

Sánchez-Pena, J. M.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Schneider, R.

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

Schwalb, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Seferos, D. S.

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Sengar, B. S.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Seto, T.

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Shafie, S.

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

Shalin, A. S.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Shameli, K.

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

Shan, F.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Sharma, C.

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Shi, Y.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Shirinzadeh, B.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Si, J.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Song, E.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Song, X.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

Soper, A. K.

D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
[Crossref]

Sperling, R. A.

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Stauss, S.

S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).

Suarez, I.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Sukhov, S. V.

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Sun, L.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Taccogna, F.

F. Taccogna, “Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid,” J. Plasma Phys. 81(5), 495810509 (2015).
[Crossref]

Tang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Terashima, K.

S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).

Thomas, R. T.

P. R. Chandran and R. T. Thomas, “Gold nanoparticles in cancer drug delivery,” in Nanotechnology Applications for Tissue Engineering, S. Thomas, Y. Grohens, and N. Ninan, eds. (Elsevier, 2015).

Timoshenko, V. Y.

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

Tsuji, T.

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

Umpierre, A. P.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

Urabe, K.

S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).

Urruchi, V.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Velders, A. H.

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

Vergaz, R.

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Vinod, M.

M. Vinod and K. G. Gopchandran, “Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates,” Prog. Nat. Sci. 24(6), 569–578 (2014).
[Crossref]

Wang, H.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

Wang, W.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Wang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Wypych, G.

G. Wypych, Handbook of Solvents, Volume 1: Properties (ChemTec, 2014).

Xua, X.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Yan, L.

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

Yan, Z.

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

Yang, K.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Yin, K.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Zakaria, A.

A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
[Crossref]

Zanella, M.

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Zeng, H.

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

Zhang, F.

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Zhang, J.

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

Zhang, T.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Zhanga, X.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Zhao, S.

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Zheng, H.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Zhou, Y.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Zhu, C.

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Zhu, H.

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

Angew. Chem., Int. Ed. (1)

D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angew. Chem., Int. Ed. 49(19), 3280–3294 (2010).
[Crossref]

Appl. Phys. A (1)

A. R. Sadrolhosseini, S. A. Rashid, S. Shafie, and S. Hassan, “Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite,” Appl. Phys. A 125(2), 82 (2019).
[Crossref]

Beilstein J. Nanotechnol. (1)

L. Kool, A. Bunschoten, A. H. Velders, and V. Saggiomo, “Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material,” Beilstein J. Nanotechnol. 10(1), 442–447 (2019).
[Crossref]

Carbohydr. Res. (1)

H. Zhu, Q. Cao, C. Li, and X. Mu, “Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents,” Carbohydr. Res. 346(13), 2016–2018 (2011).
[Crossref]

Chem. Soc. Rev. (1)

R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1896–1908 (2008).
[Crossref]

Colloids Surf., A (1)

L. Yan, J. Li, N. Liu, X. Hao, C. Li, W. Hou, and D. X. Li, “Thermostable gold nanoparticle-doped silicone elastomer for optical materials,” Colloids Surf., A 518(53), 151–157 (2017).
[Crossref]

CrystEngComm (1)

J. Polte, “Fundamental growth principles of colloidal metal nanoparticles – A new perspective,” CrystEngComm 17(36), 6809–6830 (2015).
[Crossref]

ISRN Nanotechnol. (1)

D. Riabinina, J. Zhang, M. Chaker, J. Margot, and D. Ma, “Size control of gold nanoparticles synthesized by laser ablation in liquid media,” ISRN Nanotechnol. 2012, 1–5 (2012).
[Crossref]

J. Am. Chem. Soc. (2)

D. T. Bowron, J. L. Finney, and A. K. Soper, “The structure of liquid tetrahydrofuran,” J. Am. Chem. Soc. 128(15), 5119–5126 (2006).
[Crossref]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127(13), 4588–4589 (2005).
[Crossref]

J. Appl. Phys. (1)

A. Resano-Garcia, Y. Battie, A. Koch, A. En Naciri, and N. Chaoui, “Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid,” J. Appl. Phys. 117(11), 113103 (2015).
[Crossref]

J. Colloid Interface Sci. (1)

J. Chen, X. Li, Y. Gu, H. Wang, X. Song, and H. Zeng, “Probing mesoscopic process of laser ablation in liquid by integrated method of optical beam deflection and time-resolved shadowgraphy,” J. Colloid Interface Sci. 489, 38–46 (2017).
[Crossref]

J. Mater. Res. (1)

A. R. Sadrolhosseini, A. S. M. Noor, K. Shameli, G. Mamdoohi, M. M. Moksin, and M. A. Mahdi, “Laser ablation synthesis and optical properties of copper nanoparticles,” J. Mater. Res. 28(18), 2629–2636 (2013).
[Crossref]

J. Nanomater. (1)

A. R. Sadrolhosseini, S. Abdul Rashid, and A. Zakaria, “Synthesis of gold nanoparticles dispersed in palm oil using laser ablation technique,” J. Nanomater. 2017, 1–5 (2017).
[Crossref]

J. Phys. Chem. B (1)

V. Amendola, S. Polizzi, and M. Meneghetti, “Laser ablation synthesis of gold nanoparticles in organic solvents,” J. Phys. Chem. B 110(14), 7232–7237 (2006).
[Crossref]

J. Phys. Chem. C (4)

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection,” J. Phys. Chem. C 118(14), 7523–7531 (2014).
[Crossref]

K. Abderrafi, R. G. Calzada, M. B. Gongalsky, I. Suarez, R. Abarques, V. S. Chirvony, V. Y. Timoshenko, R. Ibanez, and J. P. Martinez-Pastor, “Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid,” J. Phys. Chem. C 115(12), 5147–5151 (2011).
[Crossref]

P. Boyer and M. Meunier, “Modeling solvent influence on growth mechanism of nanoparticles (Au, Co) synthesized by surfactant free laser processes,” J. Phys. Chem. C 116(14), 8014–8019 (2012).
[Crossref]

Z. Yan, R. Bao, Y. Huang, A. N. Caruso, S. B. Qadri, C. Z. Dinu, and D. B. Chrisey, “Excimer laser production, assembly, sintering, and fragmentation of novel fullerene-like permalloy particles in liquid,” J. Phys. Chem. C 114(9), 3869–3873 (2010).
[Crossref]

J. Plasma Phys. (1)

F. Taccogna, “Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid,” J. Plasma Phys. 81(5), 495810509 (2015).
[Crossref]

J. Polym. Sci., Part A: Polym. Chem. (1)

S. K. Jewrajka and U. Chatterjee, “Block copolymer mediated synthesis of amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran medium: An approach for the preparation of polymer-gold nanocomposites,” J. Polym. Sci., Part A: Polym. Chem. 44(6), 1841–1854 (2006).
[Crossref]

J. Theor. Chem. (1)

A. Dwivedi, V. Baboo, and A. Bajpai, “Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study,” J. Theor. Chem. 2015, 1–11 (2015).
[Crossref]

KONA (1)

M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA 34(0), 80–90 (2017).
[Crossref]

Laser Photonics Rev. (1)

A. Pyatenko, H. Wang, N. Koshizaki, and T. Tsuji, “Mechanism of pulse laser interaction with colloidal nanoparticles,” Laser Photonics Rev. 7(4), 596–604 (2013).
[Crossref]

Mater. Chem. Phys. (1)

L. Balan, J. P. Malval, R. Schneider, and D. Burget, “Silver nanoparticles: New synthesis, characterization and photophysical properties,” Mater. Chem. Phys. 104(2-3), 417–421 (2007).
[Crossref]

Nat. Commun. (2)

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

C. Zhu, S. Liang, E. Song, Y. Zhou, W. Wang, F. Shan, Y. Shi, C. Hao, K. Yin, T. Zhang, J. Liu, H. Zheng, and L. Sun, “In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles,” Nat. Commun. 9(1), 421 (2018).
[Crossref]

Opt. Data Process. Storage (1)

J. F. Algorri, D. Poudereux, B. García-Cámara, V. Urruchi, J. M. Sánchez-Pena, R. Vergaz, M. Caño-García, X. Quintana, M. A. Geday, and J. F. Otón, “Metal nanoparticles-PDMS nanocomposites for tunable optical filters and sensors,” Opt. Data Process. Storage 2(1), 1–6 (2016).
[Crossref]

Opt. Mater. (1)

X. Zhanga, X. Liu, X. Xua, S. Zhao, T. Li, L. Guo, and K. Yang, “Self-assembled gold nanoparticles as saturable absorber for low-threshold all-solid-state pulsed 2 µm laser,” Opt. Mater. 83, 82–86 (2018).
[Crossref]

Philos. Mag. Lett. (1)

G. Compagnini, E. Messina, R. S. Cataliotti, A. Grillo, and G. Giaquinta, “Diffusion dynamics of laser-ablated noble-metal nanoparticles in liquids,” Philos. Mag. Lett. 89(4), 250–256 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (2)

V. Amendola and M. Meneghetti, “Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles,” Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
[Crossref]

S. Barcikowski and G. Compagnini, “Advanced nanoparticle generation and excitation by lasers in liquids,” Phys. Chem. Chem. Phys. 15(9), 3022–3026 (2013).
[Crossref]

Phys. Plasmas (1)

R. Chiba, Y. Ishikawa, J. Hasegawa, and K. Horioka, “Time evolution of laser-ablation plumes and induced shock waves in low-pressure gas,” Phys. Plasmas 24(6), 063520 (2017).
[Crossref]

Prog. Nat. Sci. (1)

M. Vinod and K. G. Gopchandran, “Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates,” Prog. Nat. Sci. 24(6), 569–578 (2014).
[Crossref]

RSC Adv. (1)

V. Garg, B. S. Sengar, V. Awasthi, P. Aaryashree, C. Sharma, S. Mukherjee, S. Kumar, and Mukherjee, “Localized surface plasmon resonance on Au nanoparticles: Tuning and exploitation for performance enhancement in ultrathin photovoltaics,” RSC Adv. 6(31), 26216–26226 (2016).
[Crossref]

Sci. Rep. (1)

A. S. Ang, A. Karabchevsky, I. V. Minin, O. V. Minin, S. V. Sukhov, and A. S. Shalin, “‘Photonic Hook’ based optomechanical nanoparticle manipulator,” Sci. Rep. 8(1), 2029 (2018).
[Crossref]

Other (7)

P. R. Chandran and R. T. Thomas, “Gold nanoparticles in cancer drug delivery,” in Nanotechnology Applications for Tissue Engineering, S. Thomas, Y. Grohens, and N. Ninan, eds. (Elsevier, 2015).

G. Wypych, Handbook of Solvents, Volume 1: Properties (ChemTec, 2014).

E. Pretsch, P. Bühlmann, and M. Badertscher, Structure Determination of Organic Compounds (Springer, 2009).

S. E. Black, Laser Ablation: Effects and Applications (Nova Science Publisher, 2011).

A. R. Sadrolhosseini, M. A. Mahdi, F. Alizadeh, and S. Abdul Rashid, “Laser ablation technique for synthesis of metal nanoparticle in liquid,” in Laser Technology and its Applications, Y. Ma, ed. (IntechOpen, 2019).

S. Stauss, K. Urabe, H. Muneoka, and K. Terashima, “Pulsed laser ablation in high-pressure gases, pressurized liquids and supercritical fluids: Generation, fundamental characteristics and applications,” in Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, D. Yang, ed. (InTechOpen, 2016).

J. Coates, “Interpretation of infrared spectra, A practical approach,” in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, R. A. Meyers, ed. (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Setup for synthesis of Au-NPs in THF using a Nd:YAG laser, a lens, a gold plate and stirrer.
Fig. 2.
Fig. 2. Absorption spectra of Au-NPs in stirred THF for different PLA times from 7 to 30 minutes
Fig. 3.
Fig. 3. (a) FTIR spectrum of pure THF, Au-NPs in THF with 7 and 30 min ablation times and (b) their enlarged spectrum between 420 and 460 cm−1 wavenumber range.
Fig. 4.
Fig. 4. HR-TEM image of Au-NPs and its mean size distribution (standard deviation in parentheses) in stirred THF for different times 7 min (a-b), 10 min (c-d), 15 min (e-f) and 30 min (g-h).
Fig. 5.
Fig. 5. HR-TEM image of Au-NPs and its mean size distribution (standard deviation in parentheses) in stationary THF for different times 7 min (a-b), 10 min (c-d), 15 min (e-f) and 30 min (g-h).
Fig. 6.
Fig. 6. Schematic diagram showing the Au-NPs diffusion dynamics in (a) stirred THF and (b) stationary THF.

Tables (1)

Tables Icon

Table 1. Comparison of mean particles diameter (standard deviation in parentheses) for stirred and stationary THF for 4 different times. The percentage of Au-NPs size which exceed 15 nm is also analyzed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L ρ c τ 2 π ε P