Abstract

We present a volume holographic waveguide display by dispersing gold nanoparticles (Au-NPs) in acrylate-based photopolymer. The diffractive bandwidth and diffraction efficiency (DE) of the volume holographic grating (VHG) applied for waveguide displays are characterized and analyzed through both the simulations and experiments. The results show that the wavelength bandwidth of the VHG can be enlarged to 30 nm with a corresponding refractive index modulation (RIM) increased to around 0.08 by dispersing the Au-NPs with a concentration of 0.012 g/ml into the acrylate-based photopolymer. Finally, the green monochromatic waveguide display system with 30° horizontal field of view (FOV) is realized.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording

Naoaki Suzuki, Yasuo Tomita, Kentaroh Ohmori, Motohiko Hidaka, and Katsumi Chikama
Opt. Express 14(26) 12712-12719 (2006)

Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

Jian Han, Juan Liu, Xincheng Yao, and Yongtian Wang
Opt. Express 23(3) 3534-3549 (2015)

Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer

Chengmingyue Li, Liangcai Cao, Qingsheng He, and Guofan Jin
Opt. Express 22(5) 5017-5028 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Piao, G. Li, M. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  2. J. Guo, Y. Tu, L. Yang, L. Wang, and B. Wang, “Holographic waveguide display with a combined-grating in-coupler,” Appl. Opt. 55(32), 9293–9298 (2016).
    [Crossref]
  3. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref]
  4. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [Crossref]
  5. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
    [Crossref]
  6. Y. Jeong, S. Lee, and J. Park, “"Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007).
    [Crossref]
  7. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21(14), 1075–1077 (1996).
    [Crossref]
  8. R. Malallah, H. Y. Li, Y. Qi, D. Cassidy, I. Muniraj, N. Al-Attar, and J. T. Sheridan, “Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis,” J. Opt. Soc. Am. A 36(3), 320–333 (2019).
    [Crossref]
  9. D. Mackey, P. O’Reilly, and I. Naydenova, “Theoretical modeling of the effect of polymer chain immobilization rates on holographic recording in photopolymers,” J. Opt. Soc. Am. A 33(5), 920–929 (2016).
    [Crossref]
  10. S. Gallego, R. Fernández, A. Márquez, M. Ortuño, C. Neipp, M. R. Gleeson, J. T. Sheridan, and A. Beléndez, “Two diffusion photopolymer for sharp diffractive optical elements recording,” Opt. Lett. 40(14), 3221–3224 (2015).
    [Crossref]
  11. R. Fernández, S. Bleda, S. Gallego, C. Neipp, A. Márquez, Y. Tomita, I. Pascual, and A. Beléndez, “Holographic waveguides in photopolymers,” Opt. Express 27(2), 827–840 (2015).
    [Crossref]
  12. Y. Lee, K. Yin, and S. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
    [Crossref]
  13. Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
    [Crossref]
  14. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  15. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
    [Crossref]
  16. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
    [Crossref]
  17. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
    [Crossref]
  18. W. S. Kim, Y. Jeong, and J. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
    [Crossref]
  19. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
    [Crossref]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  21. C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
    [Crossref]
  22. Y. Weng, D. Xu, Y. Zhang, X. Li, and S. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [Crossref]
  23. J. Marín-Sáez, J. Atencia, D. Chemisana, and M. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref]
  24. F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
    [Crossref]
  25. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
    [Crossref]
  26. V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
    [Crossref]
  27. G. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [Crossref]
  28. R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
    [Crossref]
  29. A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
    [Crossref]
  30. Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
    [Crossref]

2019 (1)

2018 (3)

Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
[Crossref]

V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
[Crossref]

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

2017 (5)

Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[Crossref]

Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[Crossref]

Y. Lee, K. Yin, and S. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (2)

2013 (1)

2009 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2007 (3)

2006 (2)

2005 (1)

1998 (1)

1997 (1)

1996 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Al-Attar, N.

Atencia, J.

Barachevsky, V. A.

V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
[Crossref]

Beléndez, A.

Bleda, S.

Bruder, F.

F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[Crossref]

Cao, L.

Cassidy, D.

Chemisana, D.

Chikama, K.

Collados, M.

Cui, J.

Fäcke, T.

F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[Crossref]

Fan, F.

Feely, C. A.

Fernández, E.

Fernández, R.

Gallego, S.

Gleeson, M. R.

Goldenberg, L. M.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Guo, J.

Han, J.

He, Q.

Healy, J. J.

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

Hidaka, M.

Hong, Y.

Jenkins, B. K.

Jeong, Y.

Jin, G.

Kang, G.

Kelly, D. P.

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

Kim, N.

Kim, W. S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Lee, S.

Lee, Y.

Li, C.

Li, G.

Li, H.

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

Li, H. Y.

Li, X.

Liu, A.

Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
[Crossref]

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

Liu, J.

Liu, Y.

Mackey, D.

Malallah, R.

R. Malallah, H. Y. Li, Y. Qi, D. Cassidy, I. Muniraj, N. Al-Attar, and J. T. Sheridan, “Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis,” J. Opt. Soc. Am. A 36(3), 320–333 (2019).
[Crossref]

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

Marín-Sáez, J.

Márquez, A.

Martin, S.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Muniraj, I.

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Naydenova, I.

Neipp, C.

O’Reilly, P.

Ohmori, K.

Ortuño, M.

Park, J.

Pascual, I.

Piao, J. A.

Piao, M.

Piazzolla, S.

Psaltis, D.

Qi, Y.

Rölle, T.

F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[Crossref]

Sakhno, O. V.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Shen, Z.

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
[Crossref]

Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Sheridan, J. T.

Smirnova, T. N.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Solomatine, I.

Steckman, G.

Stumpe, J.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Suzuki, N.

Tan, X.

Toal, V.

Tomita, Y.

Tu, Y.

Wang, B.

Wang, L.

Wang, Y.

Wang, Z.

Weng, Y.

Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
[Crossref]

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

Wu, S.

Xu, D.

Yang, L.

Yao, X.

Yin, K.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Zang, J.

Zhang, Y.

Y. Weng, Y. Zhang, J. Cui, A. Liu, Z. Shen, X. Li, and B. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays,” Opt. Lett. 43(23), 5773–5776 (2018).
[Crossref]

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

Zhou, G.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

IEEE Photonics J. (2)

A. Liu, Y. Zhang, Y. Weng, Z. Shen, and B. Wang, “Diffraction efficiency distribution of output grating in holographic waveguide display system,” IEEE Photonics J. 10(4), 1–10 (2018).
[Crossref]

Z. Shen, Y. Zhang, Y. Weng, and X. Li, “Characterization and Optimization of Field of View in a Holographic Waveguide Display,” IEEE Photonics J. 9(6), 1–11 (2017).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nanotechnology (1)

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[Crossref]

Opt. Express (11)

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref]

W. S. Kim, Y. Jeong, and J. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
[Crossref]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
[Crossref]

Y. Jeong, S. Lee, and J. Park, “"Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007).
[Crossref]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[Crossref]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref]

R. Fernández, S. Bleda, S. Gallego, C. Neipp, A. Márquez, Y. Tomita, I. Pascual, and A. Beléndez, “Holographic waveguides in photopolymers,” Opt. Express 27(2), 827–840 (2015).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
[Crossref]

Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[Crossref]

Y. Lee, K. Yin, and S. Wu, “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays,” Opt. Express 25(22), 27008–27014 (2017).
[Crossref]

Opt. Lett. (6)

Opt. Spectrosc. (1)

V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
[Crossref]

Polymers (2)

R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[Crossref]

F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic flowchart of photo-induced polymerization.
Fig. 2.
Fig. 2. TEM characterization of Au-NPs solution, and Particle size statistics of Au-NPs.
Fig. 3.
Fig. 3. Flowchart for fabricating the holographic dry plate. Transmission spectra of the Au-NPs dispersed photopolymer is also shown in the figure.
Fig. 4.
Fig. 4. (a) Image transmission diagram of the holographic waveguide; (b) Vector circle analysis of VHG-couplers; (c) Schematic diagram of the grating cross section.
Fig. 5.
Fig. 5. (a) Simulation model setup for VHG; (b) Simulated electric field for VHG.
Fig. 6.
Fig. 6. (a) Holographic recording optical setup for volume holographic waveguide; (b) Post-treatment flow diagram.
Fig. 7.
Fig. 7. The relationship between diffractive wavelength bandwidth and RIM of Au-NPs dispersed photopolymer simulated by COMSOL software
Fig. 8.
Fig. 8. (a) Simulated and measured DE curves of waveguide applied VHG using pure photopolymer, the RIM of simulated VHG is set as 0.03; (b) Simulated and measured DE curves of waveguide applied VHG using Au-NPs dispersed photopolymer, the RIM of simulated VHG is 0.08. All the above DE curves are measured by the UV/VIS spectrophotometer TU-1901 made by PERSEE Corporation.
Fig. 9.
Fig. 9. Schematic diagram of the volume holographic waveguide display. VHGs are used as the optical couplers for coupling the green spectral lights propagating in the waveguide layers. The photograph shows the appearance of the prototype we designed.
Fig. 10.
Fig. 10. Photograph of the output image of the prototype using two different volume holographic waveguide samples. (a) Original input image; (b) Sample fabricated with photopolymer without Au-NPs; (c) Sample fabricated with Au-NPs dispersed photopolymer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 n Λ cos θ B ,
n = n 0 + Δ ncos [ 2 π Λ ( xsin ( φ ) + ycos ( φ ) ] ,
σ = σ 0 + Δ σ cos [ 2 π Λ ( xsin ( φ ) + ycos ( φ ) + π ] ,