Abstract

Silicon waveguide structures are a viable alternative for the transmission of signals over a wide range of frequencies, and new fabrication methods are key to increased applications. In this work, THz transparency of silicon-core, silica clad fibers, refined using a traveling solvent method, is demonstrated. The ≈ 200 µm core of these fibers is shown to have good transmission from 4.8–9 µm and 1–7 THz. Fibers were drawn on a conventional optical fiber tower using the scalable molten core technique and CO2 laser annealed, resulting in large-grain crystalline cores with broadband transmission. The spectral properties are comparable to those of rectangular guides of similar cross-sectional area cut from high resistivity float zone silicon wafers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz waveguiding in glass-clad silicon wafers

Trygve Sørgård, Kjell Martin Mølster, Fredrik Laurell, Valdas Pasiskevicius, Ursula J. Gibson, and Ulf L. Österberg
Opt. Mater. Express 10(3) 742-751 (2020)

Single crystal tellurium semiconductor core optical fibers

Qianhang Luo, Guowu Tang, Min Sun, Guoquan Qian, Zhenguo Shi, Qi Qian, and Zhongmin Yang
Opt. Mater. Express 10(4) 1072-1082 (2020)

CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients

Wei Wu, Mustafa Balci, Seunghan Song, Chunxin Liu, Michael Fokine, Fredrik Laurell, Thomas Hawkins, John Ballato, and Ursula J. Gibson
Opt. Mater. Express 10(4) 926-936 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
    [Crossref]
  2. Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
    [Crossref]
  3. K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23(25), 31977–31990 (2015).
    [Crossref]
  4. H. Amarloo and S. Safavi-Naeini, “Terahertz line defect waveguide based on silicon-on-glass technology,” IEEE Trans. Terahertz Sci. Technol. 7(4), 433–439 (2017).
    [Crossref]
  5. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [Crossref]
  6. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
    [Crossref]
  7. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44(28), 5937–5946 (2005).
    [Crossref]
  8. A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
    [Crossref]
  9. D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).
  10. T. Sørgård, K. M. Mølster, F. Laurell, V. Pasiskevicius, U. J. Gibson, and U. L. Österberg, “Terahertz waveguiding in glass-clad silicon wafers,” Opt. Mater. Express 10(3), 742–751 (2020).
    [Crossref]
  11. N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
    [Crossref]
  12. Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
    [Crossref]
  13. Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
    [Crossref]
  14. S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
    [Crossref]
  15. W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.
  16. J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabricationa route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
    [Crossref]
  17. M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
    [Crossref]
  18. C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
    [Crossref]
  19. G. A. Wolff and A. I. Mlavsky, “Travelling solvent techniques,” in Crystal Growth: Theory and Techniques Volume 1, C. H. L. Goodman, ed. (Springer US, 1974), pp. 193–232.
  20. M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
    [Crossref]
  21. C. R. Poznich and J. C. Richter, “Silicon for use as a transmissive material in the far IR,” in Window and Dome Technologies and Materials III, vol. 1760P. Klocek, ed., International Society for Optics and Photonics (SPIE, 1992), pp. 112–120.
  22. S. Braun and H. G. Grimmeiss, “Optical properties of gold acceptor and donor levels in silicon,” J. Appl. Phys. 45(6), 2658–2665 (1974).
    [Crossref]
  23. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
    [Crossref]
  24. K. Mølster, “THz time domain spectroscopy of materials in reflection and transmission,” Master’s thesis, Department of Electronic Systems, Faculty of Information Technology and Electrical Engineering, NTNU (2017).
  25. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express 18(2), 1289–1295 (2010).
    [Crossref]
  26. D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
    [Crossref]
  27. W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
    [Crossref]
  28. W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
    [Crossref]

2020 (3)

2019 (4)

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

2018 (1)

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabricationa route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

2017 (2)

2016 (2)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

2015 (2)

K. Tsuruda, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Express 23(25), 31977–31990 (2015).
[Crossref]

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

2014 (1)

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

2010 (1)

2007 (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

2005 (1)

2004 (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

2000 (1)

1987 (1)

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
[Crossref]

1975 (1)

M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
[Crossref]

1974 (1)

S. Braun and H. G. Grimmeiss, “Optical properties of gold acceptor and donor levels in silicon,” J. Appl. Phys. 45(6), 2658–2665 (1974).
[Crossref]

Amarloo, H.

H. Amarloo and S. Safavi-Naeini, “Terahertz line defect waveguide based on silicon-on-glass technology,” IEEE Trans. Terahertz Sci. Technol. 7(4), 433–439 (2017).
[Crossref]

Arora, M.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
[Crossref]

Balci, M.

Balci, M. H.

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Ballato, J.

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabricationa route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).

Bas, D. A.

D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).

Boone, F.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

Braun, S.

S. Braun and H. G. Grimmeiss, “Optical properties of gold acceptor and donor levels in silicon,” J. Appl. Phys. 45(6), 2658–2665 (1974).
[Crossref]

Breiby, D. W.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Bristow, A. D.

D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).

Brown, M.

M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
[Crossref]

Buset, O. T.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Cantwell, P. R.

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Charlebois, S. A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

Chen, W.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Chen, Z.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Coucheron, D. A.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Cushing, S. K.

D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).

Deslandes, D.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

Fink, Y.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Fokine, M.

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Franz, Y.

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Fujita, M.

Gallot, G.

Garg, R.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
[Crossref]

Gibson, U. J.

T. Sørgård, K. M. Mølster, F. Laurell, V. Pasiskevicius, U. J. Gibson, and U. L. Österberg, “Terahertz waveguiding in glass-clad silicon wafers,” Opt. Mater. Express 10(3), 742–751 (2020).
[Crossref]

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Grimmeiss, H. G.

S. Braun and H. G. Grimmeiss, “Optical properties of gold acceptor and donor levels in silicon,” J. Appl. Phys. 45(6), 2658–2665 (1974).
[Crossref]

Grischkowsky, D.

Hao, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Hawkins, T.

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

Hawkins, T. W.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

Healy, N.

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Hou, C.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Ignatyev, K.

Jamison, S. P.

Jeon, T.-I.

Ji, Y. B.

Jia, X.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Jiaoqi, H.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Jinying, D.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Joannopoulos, J. D.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Jones, C. L.

M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
[Crossref]

Jones, M.

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Kim, S.-H.

Kuang, N.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Laurell, F.

T. Sørgård, K. M. Mølster, F. Laurell, V. Pasiskevicius, U. J. Gibson, and U. L. Österberg, “Terahertz waveguiding in glass-clad silicon wafers,” Opt. Mater. Express 10(3), 742–751 (2020).
[Crossref]

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

W. Wu, M. H. Balci, K. Mühlberger, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “Ge-capped SiGe core optical fibers,” Opt. Mater. Express 9(11), 4301–4306 (2019).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Lee, E. S.

Li, L.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Li, S.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Liu, C.

Lønsethagen, K.

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

Ma, X.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Malekabadi, A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

Mao, Y.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

McGowan, R. W.

Meiqiong, T.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

Mlavsky, A. I.

G. A. Wolff and A. I. Mlavsky, “Travelling solvent techniques,” in Crystal Growth: Theory and Techniques Volume 1, C. H. L. Goodman, ed. (Springer US, 1974), pp. 193–232.

Mølster, K.

K. Mølster, “THz time domain spectroscopy of materials in reflection and transmission,” Master’s thesis, Department of Electronic Systems, Faculty of Information Technology and Electrical Engineering, NTNU (2017).

Mølster, K. M.

Mühlberger, K.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

Nagatsuma, T.

Niu, Z.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Österberg, U. L.

Pasiskevicius, V.

Patil, N.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Peacock, A. C.

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabricationa route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

Y. Franz, A. F. J. Runge, H. Ren, N. Healy, K. Ignatyev, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock, “Material properties of tapered crystalline silicon core fibers,” Opt. Mater. Express 7(6), 2055–2061 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Poznich, C. R.

C. R. Poznich and J. C. Richter, “Silicon for use as a transmissive material in the far IR,” in Window and Dome Technologies and Materials III, vol. 1760P. Klocek, ed., International Society for Optics and Photonics (SPIE, 1992), pp. 112–120.

Pradhan, M.

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
[Crossref]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Ren, H.

Ren, L.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Richter, J. C.

C. R. Poznich and J. C. Richter, “Silicon for use as a transmissive material in the far IR,” in Window and Dome Technologies and Materials III, vol. 1760P. Klocek, ed., International Society for Optics and Photonics (SPIE, 1992), pp. 112–120.

Runge, A. F. J.

Safavi-Naeini, S.

H. Amarloo and S. Safavi-Naeini, “Terahertz line defect waveguide based on silicon-on-glass technology,” IEEE Trans. Terahertz Sci. Technol. 7(4), 433–439 (2017).
[Crossref]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Shimabukuro, F.

Siegel, P. H.

Song, S.

W. Wu, M. Balci, S. Song, C. Liu, M. Fokine, F. Laurell, T. Hawkins, J. Ballato, and U. J. Gibson, “CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients,” Opt. Mater. Express 10(4), 926–936 (2020).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Sørgård, T.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Tan, S.-C.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Tsuruda, K.

Wang, S.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Wei, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Wei, W.

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

Weiling, F.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Willoughby, A. F.

M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
[Crossref]

Wolff, G. A.

G. A. Wolff and A. I. Mlavsky, “Travelling solvent techniques,” in Crystal Growth: Theory and Techniques Volume 1, C. H. L. Goodman, ed. (Springer US, 1974), pp. 193–232.

Wu, W.

Xue, F.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Xueping, C.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Yang, Z.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Yeh, C.

Yu, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Zhang, B.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Zhang, J.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Zhang, Y.

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

Zhao, X.

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

Zhao, Z.

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Adv. Opt. Mater. (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4(7), 1004–1008 (2016).
[Crossref]

APL Photonics (1)

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabricationa route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

Appl. Opt. (1)

China Commun. (1)

Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Commun. 16(9), 1–14 (2019).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

H. Amarloo and S. Safavi-Naeini, “Terahertz line defect waveguide based on silicon-on-glass technology,” IEEE Trans. Terahertz Sci. Technol. 7(4), 433–439 (2017).
[Crossref]

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol. 4(4), 447–453 (2014).
[Crossref]

Infrared Phys. (1)

M. Pradhan, R. Garg, and M. Arora, “Multiphonon infrared absorption in silicon,” Infrared Phys. 27(1), 25–30 (1987).
[Crossref]

J. Appl. Phys. (2)

S. Braun and H. G. Grimmeiss, “Optical properties of gold acceptor and donor levels in silicon,” J. Appl. Phys. 45(6), 2658–2665 (1974).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Nat. Commun. (3)

C. Hou, X. Jia, L. Wei, S.-C. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6(1), 6248 (2015).
[Crossref]

S. Song, K. Lønsethagen, F. Laurell, T. W. Hawkins, J. Ballato, M. Fokine, and U. J. Gibson, “Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres,” Nat. Commun. 10(1), 1790 (2019).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

Z. Zhao, L. Ren, J. Zhang, S. Wang, F. Xue, and Y. Mao, “High temperature annealing of si core fiber with different annealing time,” Opt. Fiber Technol. 58, 102288 (2020).
[Crossref]

Opt. Mater. Express (4)

RSC Adv. (1)

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Solid-State Electron. (1)

M. Brown, C. L. Jones, and A. F. Willoughby, “Solubility of gold in p-type silicon,” Solid-State Electron. 18(9), 763–770 (1975).
[Crossref]

Other (5)

G. A. Wolff and A. I. Mlavsky, “Travelling solvent techniques,” in Crystal Growth: Theory and Techniques Volume 1, C. H. L. Goodman, ed. (Springer US, 1974), pp. 193–232.

W. Wei, S. Song, M. H. Balci, F. Laurell, P. R. Cantwell, J. Ballato, and U. J. Gibson, “Single crystal semiconductor-core optical fiber,” in Sixth Intl WSOF 2019, vol. 11206; J. Ballato and L. Dong, eds. (SPIE, 2019), pp. 1120615:1–4.

D. A. Bas, S. K. Cushing, J. Ballato, and A. D. Bristow, “Terahertz waveguiding in silicon-core fibers,” arXiv:1305.0520 (2013).

K. Mølster, “THz time domain spectroscopy of materials in reflection and transmission,” Master’s thesis, Department of Electronic Systems, Faculty of Information Technology and Electrical Engineering, NTNU (2017).

C. R. Poznich and J. C. Richter, “Silicon for use as a transmissive material in the far IR,” in Window and Dome Technologies and Materials III, vol. 1760P. Klocek, ed., International Society for Optics and Photonics (SPIE, 1992), pp. 112–120.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. THz experimental setup for waveguide transmission measurements.
Fig. 2.
Fig. 2. Diffraction patterns of the $9.6$ mm long silicon core fiber made by removal of Au. (a) Bragg reflections of rotating fiber; red and blue tags indicate from which part of the fiber (as shown in the inset) peaks originate. Gray ticks on the x-axis indicate gold Bragg angles. (b) $\phi$ scans for {004}, {220} and {111} reflections. (c) electron diffraction from thin section of core material.
Fig. 3.
Fig. 3. SEM and TEM characterization of the core (a) BSE image, (b) silicon EDS map, (c) oxygen EDS map, (d) gold EDS map. Scale bars 60 µm. (e) A bright field (BF) TEM image showing defects in the silicon (scale bar 2 µm), and (f) a gold nanoparticle decorating a dislocation found in a high angle annular dark field (HAADF) STEM image (scale bar 200 nm).
Fig. 4.
Fig. 4. FTIR spectra of silica fiber (black), silicon core fiber (blue), and rectangular HRFZ Si waveguide (red). Gray vertical bar indicates range of signal magnitudes.
Fig. 5.
Fig. 5. Time traces of (a) the dry air reference when no sample is present (black), (b) a 9.6 mm long 210 µm diameter core fiber (blue) and (c) a rectangular guide, (area $\sim 0.03$ mm$^{2}$, length 13 mm) (red).
Fig. 6.
Fig. 6. Fourier transforms of THz signals for dry air reference (black), a 9.6 mm long silicon core fiber (blue) and a 13 mm long rectangular-cut HRFZ wafer (red). Scale bars on inset are 300 µm.
Fig. 7.
Fig. 7. (a) Frequency and (b) Wigner-Ville representation of fiber transmission signal and (c) frequency and (d) Wigner-Ville plots for a rectangular waveguide signal. Solid lines in frequency plots present moving averages over the GaP reflections. White lines in the Wigner-Ville figures show the measured THz time-domain spectroscopy signals.
Fig. 8.
Fig. 8. Time-domain signal (top) and Fourier transform (bottom), of the rectangular guide after removal from and reinsertion into the THz sample holder.