Abstract

Wideband optical saturable absorbers (SA) are an ideal laser component for pulse laser generation in different wavelengths, which has attracted tremendous attention in recent years. Herein, a MoO3-x-based novel wideband optical SA has been demonstrated by utilizing it for ∼1/1.5/2 μm Q-switched pulses generation. After separately integrating the MoO3-x-SA into Yb-, Er- and Tm-doped fiber lasers, passively Q-switched pulses with pulse durations of ∼1.5/2.2/1.6 μs, repetition rates of several tens kilohertz at corresponding wavelengths of ∼1038/1562.9/1910 nm are obtained. Our work firstly reveals the remarkable wideband optical saturable absorption of the MoO3-x, which strongly implies the potential application in infrared photonics devices. It may also provide new opportunities for wideband optical SA based on oxygen-deficient metal oxides.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber

Meng Wang, Shaolong Huang, Yu-Jia Zeng, Jingwei Yang, Jihong Pei, and Shuangchen Ruan
Opt. Mater. Express 9(11) 4429-4437 (2019)

Passively Q-switched mode-locked ytterbium-doped fiber laser based on an Fe3O4-nanoparticle saturable absorber

Guoliang Chen, Yan Yang, Meng Tian, Cong Li, Yanhua Huang, and Min Lv
Opt. Mater. Express 10(2) 588-596 (2020)

Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser

Jia Guo, Huanian Zhang, Chao Zhang, Zhen Li, Yingqiang Sheng, Chonghui Li, Xihao Bao, Baoyuan Man, Yang Jiao, and Shouzhen Jiang
Opt. Mater. Express 7(10) 3494-3502 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
    [Crossref]
  2. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  3. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).
  4. D. Sebbag, A. Korenfeld, and S. Noach, “Passively Q-switched 2 μm Tm-doped laser for medical applications,” in Advanced Solid-State Lasers Congress (2015), paper AF2A.7.
  5. T. Hakulinen and O. G. Okhotnikov, “8 ns fiber laser Q switched by the resonant saturable absorber mirror,” Opt. Lett. 32(18), 2677–2679 (2007).
    [Crossref]
  6. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref]
  7. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for the fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
    [Crossref]
  8. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  9. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1 (2014).
    [Crossref]
  10. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
    [Crossref]
  11. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref]
  12. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref]
  13. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  14. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref]
  15. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
    [Crossref]
  16. Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
    [Crossref]
  17. K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
    [Crossref]
  18. H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
    [Crossref]
  19. N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .
  20. K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
    [Crossref]
  21. X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618 (2016).
    [Crossref]
  22. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref]
  23. C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
    [Crossref]
  24. C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
    [Crossref]
  25. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
    [Crossref]
  26. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  27. N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
    [Crossref]
  28. Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
    [Crossref]
  29. G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
    [Crossref]
  30. C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
    [Crossref]
  31. H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
    [Crossref]
  32. N. Ming, S. Tao, W. Yang, Q. Chen, and H. Zhang, “Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber,” Opt. Express 26(7), 9017–9026 (2018).
    [Crossref]
  33. R. I. Woodward and E. J. Kelleher, “2D Saturable Absorbers for Fibre Lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
    [Crossref]
  34. C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
    [Crossref]
  35. T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
    [Crossref]
  36. Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
    [Crossref]
  37. Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
    [Crossref]
  38. H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
    [Crossref]
  39. S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
    [Crossref]
  40. M. Wang, S. Huang, Y.-J. Zeng, J. Yang, J. Pei, and S. Ruan, “Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber,” Opt. Mater. Express 9(11), 4429–4437 (2019).
    [Crossref]
  41. W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
    [Crossref]
  42. W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
    [Crossref]
  43. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  44. U. Keller and K. J. Weingarten, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]

2020 (3)

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

2019 (5)

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

M. Wang, S. Huang, Y.-J. Zeng, J. Yang, J. Pei, and S. Ruan, “Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber,” Opt. Mater. Express 9(11), 4429–4437 (2019).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

2018 (4)

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

N. Ming, S. Tao, W. Yang, Q. Chen, and H. Zhang, “Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber,” Opt. Express 26(7), 9017–9026 (2018).
[Crossref]

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

2017 (5)

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

2016 (5)

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618 (2016).
[Crossref]

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

2015 (6)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

R. I. Woodward and E. J. Kelleher, “2D Saturable Absorbers for Fibre Lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref]

2014 (4)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1 (2014).
[Crossref]

2013 (2)

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for the fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

2012 (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2010 (1)

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

2009 (2)

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

2007 (1)

1996 (1)

U. Keller and K. J. Weingarten, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Abramski, K. M.

Adams, J.

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Ahmad, H.

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Anasori, B.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Brezesinski, T.

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Cai, Z.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Chen, H.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

Chen, L.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Chen, Q.

N. Ming, S. Tao, W. Yang, Q. Chen, and H. Zhang, “Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber,” Opt. Express 26(7), 9017–9026 (2018).
[Crossref]

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

Chen, Y.

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Choi, W. K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Cloud, J. E.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Cook, J. B.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Corr, S. A.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Cui, H.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Cui, W.

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

Dhanabalan, S. C.

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Du, B.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Du, J.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Dunn, B.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

Fan, D.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Fan, T.

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Fu, S.

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).

Gandhi, H. H.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

Gao, B.

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Ge, Y.

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Gogotsi, Y.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Guo, B.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Guo, L.

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Hakulinen, T.

Hao, X. P.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

Hasan, T.

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

He, J.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

He, J. L.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

He, L.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Heier, K. R.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Hou, J.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

Howe, R. C. T.

Hu, G.

Hu, Y. S.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Huan, T. D.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Huang, S.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

M. Wang, S. Huang, Y.-J. Zeng, J. Yang, J. Pei, and S. Ruan, “Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber,” Opt. Mater. Express 9(11), 4429–4437 (2019).
[Crossref]

Huang, Y.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Ismail, M. F.

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Jhon, Y. I.

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Jhon, Y. M.

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Jiang, S.

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Jiang, X.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jin, Z.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kelleher, E. J.

R. I. Woodward and E. J. Kelleher, “2D Saturable Absorbers for Fibre Lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

Kelleher, E. J. R.

Keller, U.

U. Keller and K. J. Weingarten, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kim, H.-S.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Ko, J. S.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Koo, J.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).

Korenfeld, A.

D. Sebbag, A. Korenfeld, and S. Noach, “Passively Q-switched 2 μm Tm-doped laser for medical applications,” in Advanced Solid-State Lasers Congress (2015), paper AF2A.7.

Kowalczyk, M.

Kriz, D. A.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).

Lan, S.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618 (2016).
[Crossref]

Lee, J.

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Lee, J. H.

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Leng, Y.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Li, D.

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Li, J.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Li, Y.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Li, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

Liang, H.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Liang, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Liao, Q.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Lin, H.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Lin, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Liu, C.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Liu, J.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, W.

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

Liu, X.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Liu, Z.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Long, Y.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Lu, J.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Lu, S. B.

Luo, H.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Lv, X.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Ma, C.

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Ma, P.

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

Macherzynski, W.

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Man, B.

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

Mao, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for the fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

Mazur, E.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Meng, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Miao, R.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Ming, N.

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Mosa, I. M.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Muhamad, A.

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Niu, K.

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

Noach, S.

D. Sebbag, A. Korenfeld, and S. Noach, “Passively Q-switched 2 μm Tm-doped laser for medical applications,” in Advanced Solid-State Lasers Congress (2015), paper AF2A.7.

Okhotnikov, O. G.

Ozolins, V.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Paletko, P.

Pang, L.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Park, K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Pei, J.

Peng, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Peng, X.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Phillips, K. C.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

Ponraj, J. S.

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Poyraz, A. S.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Qi, Y.

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

Qiu, J.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Ramprasad, R.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Ruan, S.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

M. Wang, S. Huang, Y.-J. Zeng, J. Yang, J. Pei, and S. Ruan, “Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber,” Opt. Mater. Express 9(11), 4429–4437 (2019).
[Crossref]

Runcorn, T. H.

Samion, M. Z.

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).

Sebbag, D.

D. Sebbag, A. Korenfeld, and S. Noach, “Passively Q-switched 2 μm Tm-doped laser for medical applications,” in Advanced Solid-State Lasers Congress (2015), paper AF2A.7.

Seo, M.

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Seshadri, R.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Shang, X.

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Sharbirin, A. S.

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

She, X.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, Q.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Shi, T.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Shi, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Sobon, G.

Song, Y. W.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Sotor, J.

Stucky, G. D.

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Suib, S. L.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Sun, L.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Sun, R.

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for the fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Sundaram, S. K.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tao, S.

Thanneeru, S.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Tolbert, S. H.

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

Torrisi, F.

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, C.

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Wang, F.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Wang, G.

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Wang, J.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

Wang, M.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, W.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Wang, X.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618 (2016).
[Crossref]

Wang, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wei, R.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Weingarten, K. J.

U. Keller and K. J. Weingarten, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

Wen, S. C.

Weng, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Woodward, R. I.

Wu, D.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Wu, G.

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Wu, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Wu, Y. Z.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

Xie, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Xing, C.

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Xiu, F.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Xu, B.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Xu, H.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

Xu, N.

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Xu, Q.

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

Xu, Y.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Yang, J.

Yang, W.

Yang, Z.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Ye, Y.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Yi, H.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Yuan, X.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Yue, W.

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zeng, Y.-J.

M. Wang, S. Huang, Y.-J. Zeng, J. Yang, J. Pei, and S. Ruan, “Passively Q-switched thulium-doped fiber laser based on oxygen vacancy MoO3-x saturable absorber,” Opt. Mater. Express 9(11), 4429–4437 (2019).
[Crossref]

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Zhang, C.

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Zhang, F.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, H.

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

C. Zhang, Y. Chen, T. Fan, Y. Ge, C. Zhao, H. Zhang, and S. Wen, “Sub-hundred nanosecond pulse generation from a black phosphorus saturable Q-switched Er-doped fiber laser,” Opt. Express 28(4), 4708–4716 (2020).
[Crossref]

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

N. Ming, S. Tao, W. Yang, Q. Chen, and H. Zhang, “Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber,” Opt. Express 26(7), 9017–9026 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Zhang, L.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Zhang, R.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Zhang, S.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhang, W.

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhang, Y.

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Zhao, C.

Zhao, G.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

Zhao, J.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Zheng, J.

Zhong, M.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Zhong, W.

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Zhu, C.

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Zhu, M.

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

Zhu, S.

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Energy Mater. (1)

Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, “Mesoporous MoO3-x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions,” Adv. Energy Mater. 6(16), 1600528 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (2)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband Few-Layer MoS2 Saturable Absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers,” Adv. Mater. 29(40), 1702496 (2017).
[Crossref]

Adv. Opt. Mater. (4)

Y. I. Jhon, J. Lee, M. Seo, J. H. Lee, and Y. M. Jhon, “van der Waals Layered Tin Selenide as Highly Nonlinear Ultrafast Saturable Absorber,” Adv. Opt. Mater. 7, 1801745 (2019).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation,” Adv. Opt. Mater. 3(7), 937–942 (2015).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

W. Wang, W. Yue, Z. Liu, T. Shi, J. Du, Y. Leng, R. Wei, Y. Ye, C. Liu, X. Liu, and J. Qiu, “Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Mode-Locked Pulse Generation,” Adv. Opt. Mater. 6(17), 1700948 (2018).
[Crossref]

Adv. Opt. Photonics (2)

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618 (2016).
[Crossref]

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684 (2015).
[Crossref]

Angew. Chem., Int. Ed. (1)

W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, “CO2-Assisted Fabrication of Two-Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances,” Angew. Chem., Int. Ed. 56(6), 1600–1604 (2017).
[Crossref]

Ann. Phys. (1)

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527(11-12), 770–776 (2015).
[Crossref]

Appl. Phys. Rev. (1)

C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, and H. Zhang, “Recent progress in ultrafast lasers based on 2D materials as a saturable absorber,” Appl. Phys. Rev. 6(4), 041304 (2019).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. Kelleher, “2D Saturable Absorbers for Fibre Lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

Appl. Surf. Sci. (1)

S. Huang, Y. Long, H. Yi, Z. Yang, L. Pang, Z. Jin, Q. Liao, L. Zhang, Y. Zhang, Y. Chen, H. Cui, J. Lu, X. Peng, H. Liang, S. Ruan, and Y.-J. Zeng, “Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption,” Appl. Surf. Sci. 491, 328–334 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

U. Keller and K. J. Weingarten, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-Insulator Passively Q-Switched Double-Clad Fiber Laser at 2 μm Wavelength,” IEEE J. Sel. Top. Quantum Electron. 21(1), 204 (2013).
[Crossref]

J. Lightwave Technol. (1)

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-μm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Laser Photonics Rev. (1)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Laser Phys. Lett. (1)

H. Ahmad, M. Z. Samion, A. Muhamad, A. S. Sharbirin, and M. F. Ismail, “Passively Q-switched thulium-doped fiber laser with silver-nanoparticle film as the saturable absorber for operation at 2.0 µm,” Laser Phys. Lett. 13(12), 126201 (2016).
[Crossref]

Light: Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Nano Lett. (1)

Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, “Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity,” Nano Lett. 9(12), 4215–4220 (2009).
[Crossref]

Nanophotonics (2)

N. Xu, P. Ma, S. Fu, X. Shang, and H. Zhang, “Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations,” Nanophotonics 9(9), 2783–2795 (2020).
[Crossref]

H. Zhang, P. Ma, M. Zhu, W. Zhang, G. Wang, and S. Fu, “Palladium selenide as a broadband saturable absorber for ultra-fast photonics,” Nanophotonics 9(8), 2557–2567 (2020).
[Crossref]

Nat. Commun. (1)

C. Zhu, F. Wang, Y. Meng, X. Yuan, F. Xiu, H. Luo, Y. Wang, J. Li, X. Lv, L. He, Y. Xu, J. Liu, C. Zhang, Y. Shi, R. Zhang, and S. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8(1), 14111 (2017).
[Crossref]

Nat. Mater. (2)

T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors,” Nat. Mater. 9(2), 146–151 (2010).
[Crossref]

H.-S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, and B. Dunn, “Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x,” Nat. Mater. 16(4), 454–460 (2017).
[Crossref]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref]

Nat. Photonics (2)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for the fibre lasers,” Nat. Photonics 7(11), 842–845 (2013).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Photonics Res. (2)

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494–502 (2019).
[Crossref]

K. Niu, R. Sun, Q. Chen, B. Man, and H. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photonics Res. 6(2), 72–76 (2018).
[Crossref]

Small (1)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref]

Other (3)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 µm Laser Sources and Their Possible Applications, Frontiers in Guided Wave Optics and Optoelectronics (IntechOpen, 2010).

D. Sebbag, A. Korenfeld, and S. Noach, “Passively Q-switched 2 μm Tm-doped laser for medical applications,” in Advanced Solid-State Lasers Congress (2015), paper AF2A.7.

N. Xu, H. Wang, H. Zhang, L. Guo, X. Shang, S. Jiang, and D. Li, “Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion,” Nanophotonics (2020) https://doi.org/10.1515/nanoph-2019-0545 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) The MoO3-x powder (inset: photograph of MoO3-x ethanol solution), (b) SEM image of MoO3-x.
Fig. 2.
Fig. 2. (a) MoO3-x-PVA film, (b) The thickness of the film, (c) Optical micrograph of fiber facet with MoO3-x-PVA film (the black circle is the fiber core and cladding).
Fig. 3.
Fig. 3. (a) Linear transmission spectra of MoO3-x-PVA film & pure PVA film, (b) Measured nonlinear curve of MoO3-x-PVA film at 1.5 μm.
Fig. 4.
Fig. 4. (a) Schematic diagram of passively Q-switched Yb-doped fiber laser, (b) Q-switched pulse trains at different pump powers
Fig. 5.
Fig. 5. Output characteristics of Yb-doped Q-switched fiber laser at pump power of ∼128.4 mW; (a) output spectrum; (b) pulse envelope; (c) RF spectra.
Fig. 6.
Fig. 6. (a) Pulse duration and repetition rate versus pump power; (b) Average output power and pulse energy versus pump power.
Fig. 7.
Fig. 7. (a) Schematic diagram of Q-switched Er-doped fiber laser, (b) Q-switched pulse trains at different pump powers
Fig. 8.
Fig. 8. Output characteristics of Er-doped Q-switched fiber laser at pump power of ∼120.8 mW, (a) output spectrum; (b) single pulse envelope; (c) RF spectra.
Fig. 9.
Fig. 9. (a) Pulse duration and repetition rate versus pump power; (b) Average output power and pulse energy versus pump power.
Fig. 10.
Fig. 10. (a) Schematic diagram of Q-switched Tm-doped fiber laser, (b) Evolution of Q-switched pulse trains at different pump power.
Fig. 11.
Fig. 11. Output characteristics of Tm-doped Q-switched fiber laser at pump power of ∼120.8 mW, (a) output spectrum; (b) single pulse envelope; (c) RF spectra.
Fig. 12.
Fig. 12. (a) Pulse duration and repetition rate versus pump power; (b) Average output power and pulse energy versus pump power.

Tables (1)

Tables Icon

Table 1. Comparison of passively Q-switched Yb-, Er- and Tm-doped fiber lasers with other wideband SAs