Abstract

We present a study on temperature dependent spectroscopic data for Yb:KGW, Yb:KYW and Yb:YLF between 80 K and 280 K and Yb:YAP between 100 K and 300 K. Absorption and emission cross sections are determined. The latter ones are obtained by using a combination of the McCumber relation and the Füchtbauer-Ladenburg equation. Fluorescence lifetimes are measured within a setup optimized for the suppression of re-absorption and compared to the radiative lifetimes calculated from the previously determined cross sections to cross check the validity of the measurements. The cross sections are evaluated with regard to the materials’ potential for supporting the generation of ultra-short laser pulses, low quantum defect lasing and requirements for suitable diode laser pump sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-dependent thermal and spectroscopic properties of Yb:YALO3 perovskite crystal for a cryogenically cooled near IR laser

Yanjie Song, Nan Zong, Ke Liu, Zhimin Wang, Xiaojun Wang, Yong Bo, Qinjun Peng, and Zuyan Xu
Opt. Mater. Express 10(7) 1522-1530 (2020)

Temperature dependent absorption and emission spectra of Tm:CaF2

Jürgen Reiter, Jörg Körner, Jan Pejchal, Akira Yoshikawa, Joachim Hein, and Malte C. Kaluza
Opt. Mater. Express 10(9) 2142-2158 (2020)

Spectroscopic analysis of efficient laser material Ho3+:YVO4

Zackery D. Fleischman, Larry D. Merkle, G. Alex Newburgh, and Mark Dubinskii
Opt. Mater. Express 3(8) 1176-1186 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719 (2006).
    [Crossref]
  2. G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
    [Crossref]
  3. R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
    [Crossref]
  4. F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
    [Crossref]
  5. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  6. K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO4)2 chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598 (2007).
    [Crossref]
  7. V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
    [Crossref]
  8. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922 (2008).
    [Crossref]
  9. F. Pirzio, L. Fregnani, A. Volpi, A. D. Lieto, M. Tonelli, and A. Agnesi, “87 fs pulse generation in a diode-pumped semiconductor saturable absorber mirror mode-locked Yb:YLF laser,” Appl. Opt. 55(16), 4414–4417 (2016).
    [Crossref]
  10. N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii, “Highly-efficient Q-switched Yb:YLF laser at 995 nm with a second harmonic conversion,” Opt. Mater. Express 7(7), 2396 (2017).
    [Crossref]
  11. M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
    [Crossref]
  12. J. Körner, C. Vorholt, H. Liebetrau, M. Kahle, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
    [Crossref]
  13. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
    [Crossref]
  14. M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
    [Crossref]
  15. X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
    [Crossref]
  16. L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  17. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  18. R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the mccumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23(9), 1770–1775 (2006).
    [Crossref]
  19. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22(17), 1317 (1997).
    [Crossref]
  20. C. Cascales, “Evaluation of crystal field effects of Yb3+ in monoclinic KGd(WO4)2 and KYb(WO4)2 laser crystals. comparison with disordered tetragonal NaGd(WO4)2 crystals,” The Journal of the Argentine Chemical Society 97, 25–38 (2009).
  21. G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, and A. Yoshikawa, “Characterization and comparison of Yb3+-doped YAlO3 perovskite crystals (Yb:YAP) with Yb3+-doped Y3Al_5O12 garnet crystals (Yb:YAG) for laser application,” J. Opt. Soc. Am. B 25(5), 884 (2008).
    [Crossref]
  22. A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
    [Crossref]
  23. M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
    [Crossref]
  24. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001).
    [Crossref]
  25. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [Crossref]
  26. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref]
  27. L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  28. A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]

2017 (3)

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii, “Highly-efficient Q-switched Yb:YLF laser at 995 nm with a second harmonic conversion,” Opt. Mater. Express 7(7), 2396 (2017).
[Crossref]

M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
[Crossref]

2016 (1)

2014 (2)

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

2012 (1)

2010 (1)

2009 (2)

C. Cascales, “Evaluation of crystal field effects of Yb3+ in monoclinic KGd(WO4)2 and KYb(WO4)2 laser crystals. comparison with disordered tetragonal NaGd(WO4)2 crystals,” The Journal of the Argentine Chemical Society 97, 25–38 (2009).

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

2008 (3)

2007 (2)

2006 (3)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

2004 (3)

G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
[Crossref]

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

2001 (1)

1999 (1)

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

1997 (1)

1993 (2)

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Agnesi, A.

Aguiló, M.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Akahane, Y.

Akbari, R.

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Alderighi, D.

Aoyama, M.

Bagnoud, V.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Bensalah, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Bonelli, L.

Boulon, G.

G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, and A. Yoshikawa, “Characterization and comparison of Yb3+-doped YAlO3 perovskite crystals (Yb:YAP) with Yb3+-doped Y3Al_5O12 garnet crystals (Yb:YAG) for laser application,” J. Opt. Soc. Am. B 25(5), 884 (2008).
[Crossref]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brenier, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Canibano, H.

Cao, D. X.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Cascales, C.

C. Cascales, “Evaluation of crystal field effects of Yb3+ in monoclinic KGd(WO4)2 and KYb(WO4)2 laser crystals. comparison with disordered tetragonal NaGd(WO4)2 crystals,” The Journal of the Argentine Chemical Society 97, 25–38 (2009).

Chase, L.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Chase, L. L.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Coluccelli, N.

Cornacchia, F.

DeLoach, L.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Deloach, L. D.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Di Lieto, A.

Díaz, F.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Dubinskii, M.

Fan, T. Y.

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fedorova, K. A.

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Fils, J.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Fregnani, L.

Fromzel, V.

Fukuda, T.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Galzerano, G.

Gavaldá, J.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Gottschall, T.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Grigoriev, S. V.

Guyot, Y.

G. Boulon, Y. Guyot, H. Canibano, S. Hraiech, and A. Yoshikawa, “Characterization and comparison of Yb3+-doped YAlO3 perovskite crystals (Yb:YAP) with Yb3+-doped Y3Al_5O12 garnet crystals (Yb:YAG) for laser application,” J. Opt. Soc. Am. B 25(5), 884 (2008).
[Crossref]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Hein, J.

M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

J. Körner, C. Vorholt, H. Liebetrau, M. Kahle, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
[Crossref]

Holtom, G. R.

Hraiech, S.

Huber, G.

Inoue, N.

Ito, M.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Jambunathan, V.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Jo ao, C. P.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Kahle, M.

Kaluza, M. C.

M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

J. Körner, C. Vorholt, H. Liebetrau, M. Kahle, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

Kawanaka, J.

Kisel, V. E.

V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
[Crossref]

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Klöpfel, D.

Körner, J.

M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

J. Körner, C. Vorholt, H. Liebetrau, M. Kahle, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

Krupke, W.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Krupke, W. F.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kuleshov, N. V.

Kurilchik, S. V.

Kway, W.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kway, W. L.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Lagatsky, A. A.

Laporta, P.

Liebetrau, H.

Lieto, A. D.

Limpert, J.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Loeser, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Lucianetti, A.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Luo, Y. M.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Major, A.

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Mandrik, A. V.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Martin, R. M.

Massons, J.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Mateos, X.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mikhailov, V. P.

Mocek, T.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Nikolov, V.

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Nishioka, H.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Ogawa, K.

Parisi, D.

Paunescu, G.

G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
[Crossref]

Payne, S.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Payne, S. A.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Pirzio, F.

Podlipensky, A. V.

Pujol, M.

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Quimby, R. S.

Rafailov, E. U.

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

Rico, M.

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Ripin, D. J.

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Roth, M.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Sanamyan, T.

Sato, H.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Sauerbrey, R.

G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
[Crossref]

Schramm, U.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Seifert, R.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

J. Körner, C. Vorholt, H. Liebetrau, M. Kahle, D. Klöpfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493 (2012).
[Crossref]

Shcherbitskii, V. G.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Siebold, M.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Sikocinski, P.

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

Smirnova, S. A.

Smith, L.

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Smith, L. K.

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Solans, X.

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Solé, R.

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Stöhlker, T.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Ter-Gabrielan, N.

Toci, G.

Tokita, S.

Tonelli, M.

Tsuji, K.

Ueda, K.

Vannini, M.

Volpi, A.

Vorholt, C.

Wagner, F.

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Wang, M. Z.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Wang, X. F.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Yamakawa, K.

Yasukevich, A. S.

Yasyukevich, A. S.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Yoshikawa, A.

Zaldo, C.

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

Zapata, L. E.

Zhou, M.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (5)

G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B 79(5), 555–558 (2004).
[Crossref]

R. Akbari, K. A. Fedorova, E. U. Rafailov, and A. Major, “Diode-pumped ultrafast Yb:KGW laser with 56 fs pulses and multi-100 kW peak power based on sesam and kerr-lens mode locking,” Appl. Phys. B 123(4), 123 (2017).
[Crossref]

F. Wagner, C. P. Jo ao, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B 116(1), 75–81 (2014).
[Crossref]

M. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

L. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

L. D. Deloach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Y3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral method reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

M. Kahle, J. Körner, J. Hein, and M. C. Kaluza, “Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb:caf 2,” Opt. Laser Technol. 92, 19–23 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (2)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped ylif4 laser crystal by the czochralski method. attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

The Journal of the Argentine Chemical Society (1)

C. Cascales, “Evaluation of crystal field effects of Yb3+ in monoclinic KGd(WO4)2 and KYb(WO4)2 laser crystals. comparison with disordered tetragonal NaGd(WO4)2 crystals,” The Journal of the Argentine Chemical Society 97, 25–38 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the measurement setup: LD…fiber coupled laser diode, M…plane mirror, P…polarizer, PM…off axis parabolic mirror, S…sample (mounted in cryostat), SM…spherical mirror with radius of 300 mm, WLS…fiber coupled white light source.
Fig. 2.
Fig. 2. Polarized absorption (left) and emission cross sections (right) for Yb:KYW at different temperatures. The according polarization is noted in the upper left corner of the graph.
Fig. 3.
Fig. 3. Polarized absorption (left) and emission cross sections (right) for Yb:KGW at different temperatures. The according polarization is noted in the upper left corner of the graph.
Fig. 4.
Fig. 4. Material length for 90% absorption for (a) Yb:KGW and (b) Yb:KYW as a function of the pump’s central wavelength $\lambda _{\textrm {p}}$ and ${1}/{e^{2}}$ half-bandwidth for each polarization (from top to bottom: $N_{\textrm {p}}$, $N_{\textrm {m}}$, $N_{\textrm {g}}$) at 100 K (left) and room temperature (right).
Fig. 5.
Fig. 5. Polarized absorption (left) and emission cross sections (right) for Yb:YAP at different temperatures. Each polarization is noted in the upper left corner of the according absorption graph. The insets use a different scale to visualize the major peaks.
Fig. 6.
Fig. 6. 90 % absorption length for Yb:YAP as a function of the pump’s central wavelength $\lambda _{\textrm {p}}$ and ${1}/{e^{2}}$-half-bandwidth for each polarization (from top to bottom: a, b, c) at 100 K (left) and room temperature (right).
Fig. 7.
Fig. 7. Polarized absorption (left) and emission cross sections (right) for Yb:YLF at different temperatures. The according polarization is noted in the upper left corner of each absorption graph.
Fig. 8.
Fig. 8. 90 % absorption length for Yb:YLF as a function of the pump’s central wavelength $\lambda _{\textrm {p}}$ and ${1}/{e^{2}}$-bandwidth for each polarization (from top to bottom: $\pi$, $\sigma$) at 100 K (left) and room temperature (right).
Fig. 9.
Fig. 9. Results for $\tau _{\textrm {f}}$ obtained by fitting a single exponential decay model to the measured fluorescence decay curves under pulsed excitation. The error bars indicate the 95 % confidence bands of the according fit. Data points in red are neglected for further processing due to their relatively high uncertainty.

Tables (3)

Tables Icon

Table 1. Parameters of the investigated samples: c dop doping concentration, n mean refractive index, d thickness.

Tables Icon

Table 2. Energy levels and zero phonon line positions of the investigated laser materials as used in the McCumber relation. The according sources are noted behind the host materials.

Tables Icon

Table 3. Retrieved lifetimes of the samples and comparison to data from the literature. τ f …fluorescence life time, τ rad …radiative life time. The radiative lifetimes where calculated from the emission cross sections according to Eq. (7)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ a ξ = ln ( I ref ξ ( λ ) I t ξ ( λ ) ) N dop d .
σ e ξ = σ a ξ Z l Z u e E ZL h c λ k T .
Z u/l ( T ) = i d i e E i k T .
σ e ξ ( λ ) = λ 2 8 π n 2 τ rad g λ ξ ( λ )
g λ ξ ( λ ) = λ 3 c I f ξ ( λ ) 1 3 j λ min λ min λ I f ξ j ( λ ) d λ
I f ξ ( λ ) = a σ e ξ ( λ ) λ 5
τ rad = 3 8 π n 2 c 1 j λ min λ min σ e ξ ( λ ) λ 4 d λ