Abstract

High-birefringence waveguide Bragg gratings for the C-band are fabricated in the Silica-on-Silicon platform with Displacement Talbot Lithography (DTL). Transmission and reflection spectrums of the Bragg wavelength splitting were measured and calculated. The birefringence here is up to 7.919×10−4 to 1.670×10−3, much higher than existing devices via other platforms. We illustrate the principle and advantage of DTL though theoretical analysis and numerical simulation. The birefringence of waveguide Bragg gratings here are customized with their device configuration (i.e., waveguide width and grating etched depth), enabling an effective method to construct scalable Silica-on-Silicon devices for highly linear-polarized external-cavity semiconductor lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Displacement Talbot lithography: a new method for high-resolution patterning of large areas

Harun H. Solak, Christian Dais, and Francis Clube
Opt. Express 19(11) 10686-10691 (2011)

Fabrication of a third-order polymer chirped waveguide Bragg grating with tapered core size by contact lithography

Binfeng Yun, Guohua Hu, Ruohu Zhang, and Yiping Cui
Appl. Opt. 54(3) 467-471 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  2. M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature 469(7328), 43–44 (2011).
    [Crossref]
  3. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
    [Crossref]
  4. J. Wang, L. C. Guan, C. Chen, R. Cheng, C. Wang, X. Sun, Y. Wu, and D. Zhang, “Metal-print-defining thermo-optic tunable chirped waveguide Bragg gratings using organic-inorganic hybrid PMMA materials,” Opt. Mater. Express 8(7), 1870–1881 (2018).
    [Crossref]
  5. R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
    [Crossref]
  6. R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
    [Crossref]
  7. Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
    [Crossref]
  8. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azãna, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
    [Crossref]
  9. A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
    [Crossref]
  10. B. Tabti, F. Nabki, and M. Ménard, “Polarization insensitive Bragg gratings in Si3N4 waveguides,” in Advanced Photonics Congress, (2017), pp IW2A.5.
  11. N. Son, K. Kim, J. Kim, and M. Oh, “Near-infrared tunable lasers with polymer waveguide Bragg gratings,” Opt. Express 20(2), 827–834 (2012).
    [Crossref]
  12. S. Yliniemi, J. Albert, Q. Wang, and S. Honkanen, “UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides,” Opt. Express 14(7), 2898–2903 (2006).
    [Crossref]
  13. H. Yun, Z. Chen, Y. Wang, J. Fluekiger, M. Caverley, L. Chrostowski, and N. Jaeger, “Polarization-rotating, Bragg-grating filters on silicon-on-insulator strip waveguides using asymmetric periodic corner corrugations,” Opt. Lett. 40(23), 5578–5581 (2015).
    [Crossref]
  14. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23(7), 1323–1331 (2006).
    [Crossref]
  15. D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
    [Crossref]
  16. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
    [Crossref]
  17. Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
    [Crossref]
  18. C. Chen, X. Zhang, Y. Yu, W. Wei, Q. Guo, L. Qin, Y. Ning, L. Wang, and H. Sun, “Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing,” J. Lightwave Technol. 36(16), 3302–3308 (2018).
    [Crossref]
  19. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref]
  20. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39(33), 6128–6135 (2000).
    [Crossref]
  21. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
    [Crossref]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  23. C. Chen, Y. Yu, R. Yang, C. Wang, J. Guo, Y. Xue, Q. Chen, and H. Sun, “Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser,” J. Lightwave Technol. 31(3), 455–460 (2013).
    [Crossref]
  24. X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
    [Crossref]
  25. T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [Crossref]
  26. M. F. Hossain, H. P. Chan, and A. Z. Kouzani, “Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects,” Opt. Express 22(8), 9334–9343 (2014).
    [Crossref]
  27. I. Richter, P. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995).
    [Crossref]

2019 (1)

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

2018 (3)

2017 (1)

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

2012 (3)

2011 (2)

2007 (2)

H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
[Crossref]

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

2006 (3)

2005 (1)

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

2004 (1)

2000 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1996 (1)

1995 (1)

Aitchison, J. S.

Albert, J.

Azãna, J.

Baker, N. J.

Bakoz, A. P.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bente, E.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Blanchetière, C.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

Blott, B. H.

Bowers, J. E.

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012).
[Crossref]

Brocklesby, W. S.

Burla, M.

Callender, C. L.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

Caverley, M.

Chan, H. P.

Chen, C.

Chen, Q.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

C. Chen, Y. Yu, R. Yang, C. Wang, J. Guo, Y. Xue, Q. Chen, and H. Sun, “Reflective optical fiber sensors based on tilted fiber Bragg gratings fabricated with femtosecond laser,” J. Lightwave Technol. 31(3), 455–460 (2013).
[Crossref]

Chen, Z.

Cheng, R.

Chrostowski, L.

Clube, F.

Cortés, L. R.

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012).
[Crossref]

Dai, X.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref]

Dais, C.

Davenport, M.

Ding, H.

Eaton, S. M.

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

T. Erdogan and J. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
[Crossref]

Fainman, Y.

Fernandes, L. A.

Fluekiger, J.

Gasse, K. V.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Gonzalez-Fernandez, A. A.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Grenier, J. R.

Grobnic, D.

Guan, L. C.

Guo, J.

Guo, Q.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

C. Chen, X. Zhang, Y. Yu, W. Wei, Q. Guo, L. Qin, Y. Ning, L. Wang, and H. Sun, “Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing,” J. Lightwave Technol. 36(16), 3302–3308 (2018).
[Crossref]

Habruseva, T.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Hegarty, S. P.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Herman, P. R.

Hillman, C. W. J.

Honkanen, S.

Hossain, M. F.

Hu, C.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Jaeger, N.

Jang, D.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

Jiang, J.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

Khurgin, J.

Kim, J.

Kim, J. R.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

Kim, K.

Kim, R. K.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
[Crossref]

Kouzani, A. Z.

Kuyken, B.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Latkowski, S.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Lee, K. S.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
[Crossref]

Li, M.

Liles, A. A.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Lim, J. H.

R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
[Crossref]

Littler, I. C. M.

Lobino, M.

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature 469(7328), 43–44 (2011).
[Crossref]

Lu, P.

Luther-Davies, B.

Marques, P. V. S.

Ménard, M.

B. Tabti, F. Nabki, and M. Ménard, “Polarization insensitive Bragg gratings in Si3N4 waveguides,” in Advanced Photonics Congress, (2017), pp IW2A.5.

Mihailov, S. J.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref]

Mills, J. D.

Ming, X.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Morton, P. A.

Moskalenko, V.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Moss, D. J.

Nabki, F.

B. Tabti, F. Nabki, and M. Ménard, “Polarization insensitive Bragg gratings in Si3N4 waveguides,” in Advanced Photonics Congress, (2017), pp IW2A.5.

Ning, Y.

O’Brien, J.

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature 469(7328), 43–44 (2011).
[Crossref]

O’Faolain, L.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Oh, M.

Oh, Y.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

Qin, L.

Richter, I.

Roelkens, G.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Ruan, Y.

Shokooh-Saremi, M.

Sipe, J.

Smelser, C. W.

Solak, H. H.

Son, N.

Song, J. H.

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
[Crossref]

Spencer, D. T.

Srinivasan, S.

Sun, H.

Sun, P.

Sun, X.

Ta’eed, V. G.

Tabti, B.

B. Tabti, F. Nabki, and M. Ménard, “Polarization insensitive Bragg gratings in Si3N4 waveguides,” in Advanced Photonics Congress, (2017), pp IW2A.5.

Tian, Z.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Viktorov, E. A.

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Walker, R. B.

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29(13), 1458–1460 (2004).
[Crossref]

Wang, C.

Wang, J.

Wang, L.

Wang, P.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Wang, Q.

Wang, X.

Wang, Y.

Wang, Z.

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

Wei, W.

Wu, Y.

Xu, F.

Xue, Y.

Yang, H.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Yang, R.

Yliniemi, S.

Yu, Y.

Yun, H.

Zhang, D.

Zhang, H.

Zhang, X.

Zhao, Y.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Zheng, Z.

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

R. K. Kim, J. H. Song, Y. Oh, D. Jang, J. R. Kim, and K. S. Lee, “Circularly polarized external cavity laser hybrid integrated with a polyimide quarter-wave plate on Planar Lightwave Circuit,” IEEE Photonics Technol. Lett. 19(14), 1048–1050 (2007).
[Crossref]

R. K. Kim, J. H. Lim, J. H. Song, and K. S. Lee, “Highly linear-polarized external cavity lasers hybrid integrated on planar lightwave circuit platform,” IEEE Photonics Technol. Lett. 18(4), 580–582 (2006).
[Crossref]

IEEE Trans. Nanotechnol. (1)

Q. Guo, Y. Yu, Z. Zheng, C. Chen, P. Wang, Z. Tian, Y. Zhao, X. Ming, Q. Chen, H. Yang, and H. Sun, “Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing,” IEEE Trans. Nanotechnol. 18, 208–211 (2019).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (3)

A. P. Bakoz, A. A. Liles, A. A. Gonzalez-Fernandez, T. Habruseva, C. Hu, E. A. Viktorov, S. P. Hegarty, and L. O’Faolain, “Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector,” Light: Sci. Appl. 7(1), 39 (2018).
[Crossref]

Z. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, and G. Roelkens, “A III-V-on-Si ultra-dense comb laser,” Light: Sci. Appl. 6(5), e16260 (2017).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nature (1)

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature 469(7328), 43–44 (2011).
[Crossref]

Opt. Eng. (1)

X. Dai, S. J. Mihailov, C. L. Callender, R. B. Walker, C. Blanchetière, and J. Jiang, “Birefringence control and dimension monitoring of silica-based ridge waveguides using Bragg gratings and ultraviolet irradiation,” Opt. Eng. 44(12), 124062 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (1)

B. Tabti, F. Nabki, and M. Ménard, “Polarization insensitive Bragg gratings in Si3N4 waveguides,” in Advanced Photonics Congress, (2017), pp IW2A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of pattern writing with DTL. (b) Simulation result of intensity distribution after the phase mask.
Fig. 2.
Fig. 2. (a) Schematic diagram of the WBG. (b)∼(e) Schematic of the fabrication progress. (f) The SEM of photoresist pattern after DTL. (g) The SEM of Bragg gratings pattern after ICP.
Fig. 3.
Fig. 3. Schematic diagram of spectrum measurement system, illustration shows the actual system.
Fig. 4.
Fig. 4. (a) Transmission (black) and reflection (blue) spectrums of WBG in circular polarization. (b) Transmission spectrums of TE mode (black) and TM mode (blue). (c) Reflection spectrums of TE mode (black) and TM mode (blue).
Fig. 5.
Fig. 5. The trend of birefringence(blue) and Bragg wavelength difference (black) changing with waveguide width W, Error bar is the averaged multiple times.
Fig. 6.
Fig. 6. Influence of grating etched depth on WBG Bragg wavelength separation and birefringence

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ex , z = m C m exp ( i m G ( x ) ) exp ( i k m z )
k m = ( k 2 m 2 G 2 ) 1 / 2
Z T ( m , n ) = 2 π / ( k 2 m 2 G 2 ) 1 / 2 ( k 2 n 2 G 2 ) 1 / 2
β 1 = β 2 + p ( 2 π / Λ ) or p λ B = 2 n e f f Λ
B = B s + B g
Δ n e f f T M T E = Δ λ B T M T E / 2 Λ