Abstract

In this study, we investigated the temperature dependence of the initial deformation and cracks of indium tin oxide (ITO) thin films deposited on a fused silica substrate using a 1064-nm quasi-continuous-wave laser. We observed that the laser-induced morphology threshold of the film shows a dramatic thickness effect. The laser-induced morphology threshold of a 100-nm ITO film is four times that of a 300-nm ITO film. Initial laser-induced surface morphologies of the initial deformation and cracks will occur as long as temperature rises to about 520 K and 1250 K, respectively, irrespective of the thickness of a film. Experimental results indicate that a thin ITO film is more likely to tolerate laser irradiation because of lower absorptivity than a thicker ITO film. Studying the temperature effect helps clarify more about the laser annealing process, which is a promising process in improving the performance of the ITO films.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
    [Crossref]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [Crossref]
  3. E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
    [Crossref]
  4. W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
    [Crossref]
  5. P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
    [Crossref]
  6. W. Ling, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
    [Crossref]
  7. Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
    [Crossref]
  8. K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
    [Crossref]
  9. J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
    [Crossref]
  10. M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
    [Crossref]
  11. H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
    [Crossref]
  12. J. Yoo, M. Matthews, P. Ramsey, A. Barrios, A. Carter, A. Lange, J. Bude, and S. Elhadj, “Thermally ruggedized ITO transparent electrode films for high power optoelectronics,” Opt. Express 25(21), 25533–25545 (2017).
    [Crossref]
  13. Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
    [Crossref]
  14. M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
    [Crossref]
  15. Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
    [Crossref]
  16. Y. Wang, A. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  17. J. Yoo, M. Menor, J. Adams, R. Raman, J. Lee, T. Olson, N. Shen, J. Suh, S. Demos, and J. Bude, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616 (2016).
    [Crossref]
  18. Y. Jae-Hyuck, L. Andrew, B. Jeff, and E. Selim, “Optical and electrical properties of indium tin oxide films near their laser damage threshold,” Opt. Mater. Express 7(3), 817–826 (2017).
    [Crossref]
  19. M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref]
  20. D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
    [Crossref]
  21. T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
    [Crossref]
  22. J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
    [Crossref]
  23. A. Eshaghi and A. Graeli, “Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”,” Optik 125(3), 1478–1481 (2014).
    [Crossref]
  24. K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
    [Crossref]
  25. Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
    [Crossref]
  26. R. Chow, J. Taylor, and Z. Wu, “Absorptance behavior of optical coatings for high-average-power laser applications,” Appl. Opt. 39(4), 650–658 (2000).
    [Crossref]
  27. C. Wang, H. Wang, W. Tang, C. Luo, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
    [Crossref]
  28. T. Ya-Hsin, Y. Hung, and C. Luo, “Femtosecond laser-colorized indium-tin-oxide films for blue light attenuation and image screening,” Opt. Express 25(26), 33134 (2017).
    [Crossref]
  29. L. Peng, Y. Zhao, X. Liu, Y. Liu, Z. Cao, M. Zhu, J. Shao, R. Hong, C. Tao, and D. Zhang, “High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength,” Opt. Mater. Express 9(2), 911–922 (2019).
    [Crossref]
  30. S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
    [Crossref]
  31. M. M. El-Nahass and E. M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates,” Mater. Sci. Eng., B 177(2), 145–150 (2012).
    [Crossref]
  32. G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
    [Crossref]
  33. Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
    [Crossref]
  34. J.-I. Han, “Stability of Externally Deformed ITO Films,” in Flexible Flat Panel Displays, 121–133 (2005).
    [Crossref]

2020 (2)

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

2019 (4)

L. Peng, Y. Zhao, X. Liu, Y. Liu, Z. Cao, M. Zhu, J. Shao, R. Hong, C. Tao, and D. Zhang, “High-repetition-rate laser-induced damage of indium tin oxide films and polyimide films at a 1064 nm wavelength,” Opt. Mater. Express 9(2), 911–922 (2019).
[Crossref]

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

2018 (2)

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

2017 (4)

2016 (4)

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

J. Yoo, M. Menor, J. Adams, R. Raman, J. Lee, T. Olson, N. Shen, J. Suh, S. Demos, and J. Bude, “Laser damage mechanisms in conductive widegap semiconductor films,” Opt. Express 24(16), 17616 (2016).
[Crossref]

W. Ling, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

2015 (1)

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

2014 (1)

A. Eshaghi and A. Graeli, “Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”,” Optik 125(3), 1478–1481 (2014).
[Crossref]

2013 (1)

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

2012 (5)

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
[Crossref]

S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
[Crossref]

M. M. El-Nahass and E. M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates,” Mater. Sci. Eng., B 177(2), 145–150 (2012).
[Crossref]

2011 (2)

C. Wang, H. Wang, W. Tang, C. Luo, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref]

K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
[Crossref]

2004 (1)

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

2001 (1)

Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
[Crossref]

2000 (1)

1999 (1)

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

1996 (1)

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

1990 (1)

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

1979 (1)

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Adams, J.

Alam, M.

M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Amin, R.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Andrew, L.

Barrios, A.

Bartha, J.

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

Bhopal, M.

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

Boyd, R.

M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Bude, J.

Campione, S.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Cao, Z.

Capolino, F.

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Carter, A.

Ceglia, D.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Cha, Y. J.

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

Chen, M.

M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
[Crossref]

Chen, S.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Chesser, J.

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

Chow, R.

Chrisey, D.

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Dal Negro, L.

Dalir, H.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

de Ceglia, D.

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

De Leon, I.

M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Demos, S.

Diao, X.

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

Dorrer, C.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Elhadj, S.

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

J. Yoo, M. Matthews, P. Ramsey, A. Barrios, A. Carter, A. Lange, J. Bude, and S. Elhadj, “Thermally ruggedized ITO transparent electrode films for high power optoelectronics,” Opt. Express 25(21), 25533–25545 (2017).
[Crossref]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

El-Menyawy, E. M.

M. M. El-Nahass and E. M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates,” Mater. Sci. Eng., B 177(2), 145–150 (2012).
[Crossref]

El-Nahass, M. M.

M. M. El-Nahass and E. M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates,” Mater. Sci. Eng., B 177(2), 145–150 (2012).
[Crossref]

Elsner, G.

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

Eshaghi, A.

A. Eshaghi and A. Graeli, “Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”,” Optik 125(3), 1478–1481 (2014).
[Crossref]

Falabella, S.

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

Gilmore, C.

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Gnolek, A.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Graeli, A.

A. Eshaghi and A. Graeli, “Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”,” Optik 125(3), 1478–1481 (2014).
[Crossref]

Gu, S.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Gu, Y.

Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
[Crossref]

Gui, Y.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Gurevich, L.

S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
[Crossref]

Han, J.-I.

J.-I. Han, “Stability of Externally Deformed ITO Films,” in Flexible Flat Panel Displays, 121–133 (2005).
[Crossref]

Hao, W.

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

He, X.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Ho, Y.

M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
[Crossref]

Hong, R.

Horwitz, J.

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Hu, L.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Hu, Y.

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

Huang, S.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Hung, Y.

Islam, A. M. H.

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

Jae-Hyuck, Y.

Jeff, B.

Jiang, L.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Keeler, G.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Kempf, J.

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

Kim, H.

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kim, T. K.

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

Kumar, K.

K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
[Crossref]

Kuo, P.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Kwak, J. S.

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

Lange, A.

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

J. Yoo, M. Matthews, P. Ramsey, A. Barrios, A. Carter, A. Lange, J. Bude, and S. Elhadj, “Thermally ruggedized ITO transparent electrode films for high power optoelectronics,” Opt. Express 25(21), 25533–25545 (2017).
[Crossref]

Lee, J.

Lee, J. H.

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

Lee, S.

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

Lee, W.

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Leu, J.

Li, E.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

Li, H.

Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
[Crossref]

Liang, W.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Lin, K.

M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
[Crossref]

Ling, W.

W. Ling, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

Liu, J.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Liu, S.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Liu, X.

Liu, Y.

Lowdermilk, W.

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Lu, Y.

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Luk, T.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Luo, C.

Ma, Z.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Mann, I.

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Marshall, K.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Matthews, M.

Menor, M.

Milam, D.

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Miscuglio, M.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Nia, B. A.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

Olson, T.

Ostendorf, A.

S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
[Crossref]

Overvig, A.

Pawlewicz, W.

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

Peng, L.

Piqué, A.

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Prasankumar, R.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Qi, Q.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Raju, N.

K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
[Crossref]

Raman, R.

Ramsey, P.

Rehman, A.

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

Ren, X.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Scalora, M.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Selim, E.

Shao, J.

Shen, C.

Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
[Crossref]

Shen, N.

Shrestha, S.

Sinclair, M.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Sorger, V. J.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Statt, M.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Subrahmanyam, A.

K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
[Crossref]

Suh, J.

Sun, S.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Tahersima, M. H.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Tan, Q.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Tang, W.

Tao, C.

Taylor, J.

Tian, A.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Timofeev, I.

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Vargas, M.

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Vincenti, M.

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Wagner, H.

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

Wang, A. X.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

Wang, C.

C. Wang, H. Wang, W. Tang, C. Luo, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref]

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

Wang, H.

Wang, R.

Wang, T.

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

Wang, X.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Wang, Y.

won Lee, D.

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

Wu, G.

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Wu, P.

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Wu, Z.

R. Chow, J. Taylor, and Z. Wu, “Absorptance behavior of optical coatings for high-average-power laser applications,” Appl. Opt. 39(4), 650–658 (2000).
[Crossref]

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Xiao, S.

S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
[Crossref]

Ya-Hsin, T.

Yang, H.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Yoo, J.

Yoo, J.-H.

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

Yu, N.

Zhang, D.

Zhang, L.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Zhang, R.

Zhao, Y.

Zhou, B.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

Zhou, W.

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Zhou, Z.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Zhu, M.

Zhuo, R.

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Zyryanov, V.

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

Adv. Polym. Technol. (1)

Y. Gu, H. Li, and C. Shen, “Numerical simulation of thermally induced stress and warpage in injection-molded thermoplastics,” Adv. Polym. Technol. 20(1), 14–21 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

S. Xiao, L. Gurevich, and A. Ostendorf, “Incubation effect and its influence on laser patterning of ITO thin film,” Appl. Phys. A: Mater. Sci. Process. 107(2), 333–338 (2012).
[Crossref]

Appl. Phys. B (1)

Z. Zhou, X. Wang, R. Zhuo, X. He, W. Liang, X. Wang, Q. Tan, and Q. Qi, “Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter,” Appl. Phys. B 124(3), 35 (2018).
[Crossref]

Appl. Phys. Lett. (2)

W. Pawlewicz, I. Mann, W. Lowdermilk, and D. Milam, “Laser-damage-resistant transparent conductive indium tin oxide coatings,” Appl. Phys. Lett. 34(3), 196–198 (1979).
[Crossref]

T. Luk, D. Ceglia, S. Liu, G. Keeler, R. Prasankumar, M. Vincenti, M. Scalora, M. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Appl. Surf. Sci. (1)

K. Kumar, N. Raju, and A. Subrahmanyam, “Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering,” Appl. Surf. Sci. 257(7), 3075–3080 (2011).
[Crossref]

J. Appl. Phys. (1)

H. Kim, C. Gilmore, A. Piqué, J. Horwitz, and D. Chrisey, “Electrical, Optical, and Structural Properties of Indium–Tin–Oxide Thin Films for Organic Light-Emitting Devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Liq. Cryst. (1)

W. Ling, “Self-activating liquid crystal devices for smart laser protection,” Liq. Cryst. 43(13-15), 2062–2078 (2016).
[Crossref]

Mater. Sci. Eng., B (1)

M. M. El-Nahass and E. M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates,” Mater. Sci. Eng., B 177(2), 145–150 (2012).
[Crossref]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

M. Chen, K. Lin, and Y. Ho, “Laser annealing process of ITO thin films using beam shaping technology,” Opt. Lasers Eng. 50(3), 491–495 (2012).
[Crossref]

Opt. Mater. Express (3)

Optik (1)

A. Eshaghi and A. Graeli, “Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates “thickness effect”,” Optik 125(3), 1478–1481 (2014).
[Crossref]

Photonics Res. (4)

J. H. Lee, A. M. H. Islam, T. K. Kim, Y. J. Cha, and J. S. Kwak, “Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height,” Photonics Res. 8(6), 1049–1058 (2020).
[Crossref]

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473–477 (2019).
[Crossref]

P. Wu, G. Wu, I. Timofeev, V. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).
[Crossref]

L. Hu, X. Ren, J. Liu, A. Tian, L. Jiang, S. Huang, W. Zhou, L. Zhang, and H. Yang, “High-power hybrid GaN-based green laser diodes with ITO cladding layer,” Photonics Res. 8(3), 279–285 (2020).
[Crossref]

Phys. Rev. B (1)

D. de Ceglia, S. Campione, M. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Phys. Status Solidi A (1)

J.-H. Yoo, A. Lange, J. Chesser, S. Falabella, and S. Elhadj, “A Survey of Transparent Conducting Films and Optoelectrical Materials for High Optical Power Applications,” Phys. Status Solidi A 216(22), 1900459 (2019).
[Crossref]

Proc. SPIE (2)

K. Marshall, C. Dorrer, M. Vargas, A. Gnolek, M. Statt, and S. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE 8475, 84750U (2012).
[Crossref]

Z. Wu, P. Kuo, Y. Lu, and S. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
[Crossref]

Sci. Rep. (1)

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Science (1)

M. Alam, I. De Leon, and R. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Thin Solid Films (1)

G. Elsner, J. Kempf, J. Bartha, and H. Wagner, “Anisotropy of thermal expansion of thin polyimide films,” Thin Solid Films 185(1), 189–197 (1990).
[Crossref]

Vacuum (2)

M. Bhopal, D. won Lee, A. Rehman, and S. Lee, “Influence of annealing temperature on structural properties of ITO thin-films on graphite substrate,” Vacuum 133, 108–113 (2016).
[Crossref]

Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum 75(2), 183–188 (2004).
[Crossref]

Other (1)

J.-I. Han, “Stability of Externally Deformed ITO Films,” in Flexible Flat Panel Displays, 121–133 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a), (c), (e), and (g) are optical micrographs of the irradiated ITO.2 sample at the range of laser power density from 800 to 1500 W/cm2; diameter (D) is the maximum transverse size of the irradiated site; (b), (d), (f), and (h) are the deformation depth profiles along the dotted lines in (a), (c), (e), and (f), respectively; the numbers indicate the locations along the transverse section of the images; 1 and 3 are the edges of the deformation, and 2 is the center of the deformation.
Fig. 2.
Fig. 2. Morphologies of the ITO.2 sample induced by the laser power density of 2000 and 3000 W/cm2; (a) optical micrograph of the irradiated ITO film at the laser power density of 2000 W/cm2; the white dotted circle surrounds the boundary of the deformation morphology; (b) magnified SEM image of the black dotted box region in (a); (c) optical micrograph of the irradiated ITO film at the laser power density of 3000 W/cm2; the white dotted circles surround the boundary of the deformation and cracks morphologies; (d) magnified SEM image of the black dotted box region in (c); the trough shows the cross-section of the cracks indicated by the white dotted box.
Fig. 3.
Fig. 3. Dependence of the film thickness on the laser-induced morphology thresholds.
Fig. 4.
Fig. 4. Dependence of film thickness on the surface morphologies irradiated with the laser power density of 5000 W/cm2, which is higher than the laser-induced morphology thresholds; (a) surface morphologies of the ITO.1 sample; numbers in the dashed line indicate the magnified center and edge of the deformation of the ITO.1 sample; (b) surface morphologies of the ITO.2 sample; numbers in the dashed line indicate the magnified center and edge of the cracks of the ITO.2 sample; (c) surface morphologies of the ITO.3 sample; numbers in the dashed line indicate the magnified center and edge of the cracks of the ITO.3 sample; images of (a), (b), and (c) have the same scale bar of 100 µm, while the rest ((1), (2), (3), (4), (5), and (6)) have the same scale bar of 10 µm.
Fig. 5.
Fig. 5. (a) Measured circular diameter of the laser-induced deformation plotted against the applied power density. The solid line is the fitting curve of the diameter of deformation; (b) measured circular diameter of the crack area on ITO.2 and ITO.3 samples plotted against the applied power density. The solid line is the fitting curve of the diameter of crack area.
Fig. 6.
Fig. 6. (a) Temperature distribution along radial direction under the series of laser power density (near their deformation thresholds) irradiation within 60 s; on the edge of the initial deformation morphology, heating is near the film deformation threshold temperature, which is schematically represented using the crossovers between the temperature distribution curve and the horizontal short-dashed line; (b) deformation threshold temperature that is obtained by comparing the size of the initial deformation in the experiment with the simulated temperature distribution curve.
Fig. 7.
Fig. 7. (a) Thermal temperature distribution along radial direction under the laser irradiation with fixed power density, which is sufficient to cause the initial cracks; on the edge of the initial cracks morphology, heating is near the film cracks threshold temperature, which is schematically represented using the crossovers between the temperature distribution curve and horizontal short-dashed line; (b) cracks threshold temperature that is obtained by comparing the size of the initial crack area in the experiment with the simulated temperature distribution curve.
Fig. 8.
Fig. 8. Surface thermal stress distribution of (a) ITO.1 sample under laser irradiation with the power density of 5000 W/cm2, (b) ITO.2 sample under laser irradiation with the power density of 3000 W/cm2, and (c) ITO.3 sample under laser irradiation with the power density of 2000 W/cm2. The black line represents the cracks threshold stress.
Fig. 9.
Fig. 9. Comparison between the experimental (solid symbol) and simulated deformation diameters (hollow symbol) on ITO.1 (a), ITO.2, (b), and ITO.3 (c) samples. The solid line is the fitting curve of the experimental deformation diameter, while the short dashed line is the fitting curve of the simulated deformation diameter; (d) experimental (solid symbol) and simulated (hollow symbol) diameters of the crack areas on ITO.2 and ITO.3 samples plotted against the applied power density.

Tables (2)

Tables Icon

Table 1. Optical (at 1064 nm) properties of Indium tin oxide (ITO) films with thicknesses of 100, 200, and 300 nm measured at room temperature

Tables Icon

Table 2. Thermophysical parameters of relevant materials in the ITO films

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q ( r , z ) = 2 α P π r 0 2 exp ( α z ) exp [ 2 ( r r 0 ) 2 ] ,
α = 1 d [ ( 1 R ) 2 2 T + ( 1 R ) 4 4 T 2 + R 2 ] ,
σ  =  ρ 2 u t 2 ,
σ = C : [ ε β ( T t e m p T t e m p 0 ) I ] ,