Abstract

We demonstrate the fabrication of optical elements on the millimeter scale by stitching-free 3D printing via two-photon polymerization, using a commercial microfabrication system (Nanoscribe GmbH). Previous limitations are overcome by the use of a large writing field objective as well as a novel high transparency resist. The printed optical components are free of stitching defects due to a single step exposure and exhibit an unpreceded glass-like appearance due to the low absorption of the resist material throughout the entire visible wavelength range. We print aspherical focusing lenses, characterize and optimize their shape fidelity, and find their optical performance close to the simulated optimum. For comparison with commercially available glass lenses we also fabricate spherical half-ball lenses of different sizes. The imaging quality of the lenses is very similar, underpinning the powerfulness of our fabrication strategy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailored nanocomposites for 3D printed micro-optics

Ksenia Weber, Daniel Werdehausen, Peter König, Simon Thiele, Michael Schmid, Manuel Decker, Peter William De Oliveira, Alois Herkommer, and Harald Giessen
Opt. Mater. Express 10(10) 2345-2355 (2020)

3D printed lens for depth of field imaging

Kelli C. Kiekens and Jennifer K. Barton
OSA Continuum 2(11) 3019-3025 (2019)

3D-printed extrusion dies: a versatile approach to optical material processing

Heike Ebendorff-Heidepriem, Juliane Schuppich, Alastair Dowler, Luis Lima-Marques, and Tanya M. Monro
Opt. Mater. Express 4(8) 1494-1504 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
    [Crossref]
  2. A. Heinrich and M. Rank, 3D Printing of Optics (SPIE, 2018).
  3. X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
    [Crossref]
  4. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259 (2011).
    [Crossref]
  5. B. G. Assefa, M. Pekkarinen, H. Partanen, J. Biskop, J. Turunen, and J. Saarinen, “Imaging-quality 3D-printed centimeter-scale lens,” Opt. Express 27(9), 12630–12637 (2019).
    [Crossref]
  6. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  7. P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  8. A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
    [Crossref]
  9. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  10. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
    [Crossref]
  11. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  12. J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
    [Crossref]
  13. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
    [Crossref]
  14. Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
    [Crossref]
  15. K. Weber, Z. Wang, S. Thiele, A. Herkommer, and H. Giessen, “Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing,” Opt. Lett. 45(10), 2784 (2020).
    [Crossref]
  16. S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
    [Crossref]
  17. J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
    [Crossref]
  18. A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
    [Crossref]
  19. L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
    [Crossref]
  20. M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9(12), 4564 (2019).
    [Crossref]
  21. E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D µ-printing via multi-photon absorption,” Polymers 8(8), 297 (2016).
    [Crossref]
  22. A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
    [Crossref]

2020 (1)

2019 (5)

2018 (4)

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
[Crossref]

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

2017 (2)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

2016 (4)

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D µ-printing via multi-photon absorption,” Polymers 8(8), 297 (2016).
[Crossref]

2015 (2)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

2013 (1)

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
[Crossref]

2011 (1)

2010 (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

Assefa, B. G.

Baldacchini, T.

Billah, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Biskop, J.

Blaicher, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Boiko, D. L.

Brasselet, E.

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
[Crossref]

Brauer, N. B.

Brugger, J.

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Caer, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Charbon, E.

Chen, Q. D.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Chen, Q.-D.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Chen, X.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Dangel, R.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dietrich, P. I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dong, B.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Duan, J.-A.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Fakhfouri, V.

Fejes, P.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Fischbach, S.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Freude, W.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Gailevicius, D.

Gibson, B. C.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Giessen, H.

K. Weber, Z. Wang, S. Thiele, A. Herkommer, and H. Giessen, “Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing,” Opt. Lett. 45(10), 2784 (2020).
[Crossref]

M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9(12), 4564 (2019).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
[Crossref]

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

Grutzner, G.

Guan, K.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Han, B.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Heindel, T.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Heinrich, A.

A. Heinrich and M. Rank, 3D Printing of Optics (SPIE, 2018).

Herkommer, A.

K. Weber, Z. Wang, S. Thiele, A. Herkommer, and H. Giessen, “Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing,” Opt. Lett. 45(10), 2784 (2020).
[Crossref]

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Herkommer, A. M.

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

Hofmann, A.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Hoose, T.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Hou, Z. S.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Hu, X. Y.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Jonušauskas, L.

Juodkazis, S.

Kaganskiy, A.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Kim, J. Y.

Kirk, R. W.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Koos, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Lee, J.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Li, J.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Liu, W.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Liu, X. Q.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Lorenser, D.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Ludescher, D.

Ma, Z. C.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Malinauskas, M.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
[Crossref]

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
[Crossref]

McLaughlin, R. A.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Moehrle, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Niu, L. G.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Noble, P. B.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Offrein, B.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Orth, A.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Partanen, H.

Pekkarinen, M.

Quirk, B. C.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Rank, M.

A. Heinrich and M. Rank, 3D Printing of Optics (SPIE, 2018).

Reitzenstein, S.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Rekštyte, S.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Reuter, I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Ristok, S.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Rodt, S.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Saarinen, J.

Sampson, D. D.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Schlehahn, A.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Schmid, M.

Srocka, N.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Strittmatter, A.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Sun, C.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Sun, H. B.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Sun, H.-B.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Thiele, S.

K. Weber, Z. Wang, S. Thiele, A. Herkommer, and H. Giessen, “Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing,” Opt. Lett. 45(10), 2784 (2020).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
[Crossref]

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Thoma, A.

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Tian, Z.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Toulouse, A.

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
[Crossref]

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett. 43(21), 5283 (2018).
[Crossref]

Troppenz, U.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Turunen, J.

von Freymann, G.

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D µ-printing via multi-photon absorption,” Polymers 8(8), 297 (2016).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Waller, E. H.

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D µ-printing via multi-photon absorption,” Polymers 8(8), 297 (2016).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Wang, L.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Wang, Z.

Ware, H. O. T.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Weber, K.

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Wood, F. M.

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Xu, J.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Xu, Y.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Yao, W.

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Zhang, H. F.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Zhang, Y. L.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Zhu, L.

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

Žukauskas, A.

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
[Crossref]

ACS Photonics (1)

S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS Photonics 4(6), 1327–1332 (2017).
[Crossref]

Adv. Funct. Mater. (2)

Z. C. Ma, X. Y. Hu, Y. L. Zhang, X. Q. Liu, Z. S. Hou, L. G. Niu, L. Zhu, B. Han, Q. D. Chen, and H. B. Sun, “Smart Compound Eyes Enable Tunable Imaging,” Adv. Funct. Mater. 29(38), 1903340 (2019).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Adv. Mater. (1)

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness,” Adv. Mater. 30(18), 1705683 (2018).
[Crossref]

Adv. Opt. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Appl. Phys. Lett. (1)

A. Žukauskas, M. Malinauskas, and E. Brasselet, “Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale,” Appl. Phys. Lett. 103(18), 181122 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Xu, W. Yao, Z. Tian, L. Wang, K. Guan, Y. Xu, Q.-D. Chen, J.-A. Duan, and H.-B. Sun, “High Curvature Concave – Convex Microlens,” IEEE Photonics Technol. Lett. 27(23), 2465–2468 (2015).
[Crossref]

Nat. Commun. (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7(1), 11763 (2016).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optica (1)

Polymers (1)

E. H. Waller and G. von Freymann, “Spatio-temporal proximity characteristics in 3D µ-printing via multi-photon absorption,” Polymers 8(8), 297 (2016).
[Crossref]

Proc. SPIE (1)

A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Super-fine inkjet process for alignment-free integration of non-transparent structures into 3D-printed micro-optics,” Proc. SPIE 10930, 109300W (2019).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3(2), e1602655 (2017).
[Crossref]

Sci. Rep. (1)

J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, and R. A. McLaughlin, “Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes,” Sci. Rep. 8(1), 1–9 (2018).
[Crossref]

Other (1)

A. Heinrich and M. Rank, 3D Printing of Optics (SPIE, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Overview of printed lenses and components used for 3D printing. (a) Aspheric lens with 1 mm diameter and half-ball lenses with 1 mm and 2 mm diameter. (b) 3D printed cubes with 1 mm side length, made from IP-S and IP-Visio. (c) 10x objective with large writing field diameter. Image courtesy of Nanoscribe GmbH. (d) Photoresist IP-Visio used for all printed lenses. Image courtesy of Nanoscribe GmbH.
Fig. 2.
Fig. 2. Design and characterization of aspherical focusing lenses. (a) Optical design of a spherical lens. (b) Aspherical lens design with same diameter and thickness as (a). (c) Lens profile before and after optimization compared to optical design. (d) Shape deviation before and after optimization. (e) Image of focal plane, monochromatic illumination at 550 nm in combination with aspherical lens from (b). (f) Profiles through (e) in x and y direction with Gaussian fitting functions.
Fig. 3.
Fig. 3. Half-ball lenses with 1 mm diameter. (a) SEM image of glass lens. (b) SEM image of 3D printed lens. (c) Profile of glass lens. (d) Profile of 3D printed lens.
Fig. 4.
Fig. 4. Imaging quality of half-ball lenses with 1 mm diameter. (a) Microscopy setup, illumination beam path in dark yellow, detection beam path in light yellow. (b) Resolution test target imaged through glass lens, scale bar: 100 µm. (c) Resolution test target imaged through printed lens, scale bar: 100 µm. (d) Zoom-in of (b), scale bar: 30 µm. (e) Zoom-in of (c), scale bar: 30 µm.
Fig. 5.
Fig. 5. Half-ball lenses with 2 mm diameter. (a) Glass lens and printed lens side-by-side. Photographic image by Moritz Flöss. (b) Sied-view of glass lens. (c) Side-view of printed lens. (d) Comparison of modulation transfer function for normal incidence (0°).