Abstract

We report an ytterbium-doped 20/400 µm double cladding fiber with an internally modified circular inner cladding. Through four fluorine-doped (F-doped) low refractive index quartz rods embedded into the inner cladding, the cladding pump absorption is considerably increased by 1.5 times. It is found that stimulated Raman scattering (SRS) threshold improves after using shorter fiber lengths. More than 2.1 kW laser output with good beam quality (M2 = 1.38) has been obtained with a suitable pump power injected, and the slope efficiency of the all-fiber laser oscillator is about 75.4%, when pumped at 915 nm. The present results suggest that low refractive index quartz rods embedded into the inner cladding proves to be an effective way for enhanced cladding pump absorption even with a circular inner cladding, which facilitates fiber splicing and provides a novel and robust fiber design of industry grade ytterbium-doped double cladding fibers for high power fiber laser applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pump absorption, laser amplification, and effective length in double-clad ytterbium-doped fibers with small area ratio

Yutong Feng, Pablo G. Rojas Hernández, Sheng Zhu, Ji Wang, Yujun Feng, Huaiqin Lin, Oscar Nilsson, Jiang sun, and Johan Nilsson
Opt. Express 27(19) 26821-26841 (2019)

Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers

Pavel Koška, Pavel Peterka, Jan Aubrecht, Ondřej Podrazký, Filip Todorov, Martin Becker, Yauhen Baravets, Pavel Honzátko, and Ivan Kašík
Opt. Express 24(1) 102-107 (2016)

Efficient operation of double-clad Yb3+-doped fiber lasers with a novel circular cladding geometry

A. Martínez-Rios, A. N. Starodumov, H. Po, Y. Wang, A. A. Demidov, and X. Li
Opt. Lett. 28(18) 1642-1644 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
    [Crossref]
  2. D. Young and C. Roychoudhuri, “Results and comparison of a cladding pumped fiber simulation using a decagon-shaped fiber,” Opt. Express 11(7), 830–837 (2003).
    [Crossref]
  3. J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
    [Crossref]
  4. P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
    [Crossref]
  5. S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
    [Crossref]
  6. N. A. Mortensen, “Air-clad fibers: pump absorption assisted by chaotic wave dynamics?” Opt. Express 15(14), 8988–8996 (2007).
    [Crossref]
  7. V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26(12), 872–874 (2001).
    [Crossref]
  8. J. Nilsson and D. N. Payne, “High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
    [Crossref]
  9. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
    [Crossref]
  10. L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
    [Crossref]
  11. A. P. Liu and K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
    [Crossref]
  12. B. Shiner, “The Impact of Fiber Laser Technology on the World Wide Material Processing Market,” CLEO: Applications and Technology, AF2J.1 (2013).
  13. E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).
  14. C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
    [Crossref]
  15. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  16. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  17. L. Liao, Y. B. Wang, Y. B. Xing, H. Q. Li, J. G. Peng, N. L. Dai, and J. Y. Li, “Fabrication, measurement, and application of 20/400 Yb-doped fiber,” Appl. Opt. 54(21), 6516–6520 (2015).
    [Crossref]
  18. A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
    [Crossref]
  19. R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
    [Crossref]
  20. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. B 19(6), 1259–1263 (2002).
    [Crossref]
  21. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  22. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
    [Crossref]
  23. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref]
  24. J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
    [Crossref]

2019 (1)

S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
[Crossref]

2017 (2)

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
[Crossref]

2016 (2)

P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

2015 (2)

L. Liao, Y. B. Wang, Y. B. Xing, H. Q. Li, J. G. Peng, N. L. Dai, and J. Y. Li, “Fabrication, measurement, and application of 20/400 Yb-doped fiber,” Appl. Opt. 54(21), 6516–6520 (2015).
[Crossref]

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

2014 (2)

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (1)

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

2011 (1)

J. Nilsson and D. N. Payne, “High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

2006 (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

1996 (2)

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

A. P. Liu and K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[Crossref]

1972 (1)

Abramov, A. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Arronte, M.

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

Chamorovskii, Y.

Chen, D. P.

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Dai, N. L.

Doya, V.

P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26(12), 872–874 (2001).
[Crossref]

Ferin, A. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Filippov, V.

Fomin, V. V.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Galvanauskas, A.

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

Gapontsev, V. P. E. D. H. G.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Golant, K.

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Guerrero-Contreras, J.

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

Han, W. T.

S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
[Crossref]

He, D. B.

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

Hu, I. N.

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

Hu, L. L.

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

Huang, B.

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jeong, S.

S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
[Crossref]

Ju, S.

S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
[Crossref]

Kamatani, K.

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

Kerttula, J.

Kirchhof, J.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Koponen, J. J.

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

Koska, P.

P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

Kouznetsov, D.

Legrand, O.

Li, C.

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

Li, H. Q.

Li, J. Y.

Liao, L.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Liu, A.

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

Liu, A. P.

A. P. Liu and K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[Crossref]

Mochalov, D. V.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Moloney, J. V.

Mortensen, N. A.

Mortessagne, F.

Moulton, P.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Narro-Garcia, R.

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

Nilsson, J.

Okhotnikov, O. G.

Payne, D. N.

J. Nilsson and D. N. Payne, “High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Peng, J. G.

Pessa, M.

Peterka, P.

P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

Petit, L.

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

Reichel, V.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Richardson, D. J.

Rodriguez, E.

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

Roychoudhuri, C.

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Shcherbakov, E. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Shiner, B.

B. Shiner, “The Impact of Fiber Laser Technology on the World Wide Material Processing Market,” CLEO: Applications and Technology, AF2J.1 (2013).

Smith, R. G.

Song, J.

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Ueda, K.

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

A. P. Liu and K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[Crossref]

Unger, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

Wang, J.

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

Wang, J. M.

J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
[Crossref]

Wang, L. F.

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

Wang, Y. B.

Xing, Y. B.

Xiong, S.

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

Yan, D.

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “High power all-fiber amplifier with different seed power injection,” Opt. Express 24(13), 14463–14469 (2016).
[Crossref]

Yan, D. P.

J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
[Crossref]

Ye, C. G.

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

Young, D.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

A. Liu, J. Song, K. Kamatani, and K. Ueda, “Rectangular double-clad fibre laser with two-end-bundled pump,” Electron. Lett. 32(18), 1673–1674 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. G. Ye, L. Petit, J. J. Koponen, I. N. Hu, and A. Galvanauskas, “Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 188–199 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

P. Koska, P. Peterka, and V. Doya, “Numerical Modeling of Pump Absorption in Coiled and Twisted Double-Clad Fibers,” IEEE J. Sel. Top. Quantum Electron. 22(2), 55–62 (2016).
[Crossref]

J. Non-Cryst. Solids (1)

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352(23-25), 2399–2403 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

S. Jeong, S. Ju, and W. T. Han, “Effect of bending on emission characteristics of large core Yb/Al doped optical fiber with depressed cladding structure,” Laser Phys. 29(2), 025102 (2019).
[Crossref]

L. F. Wang, D. B. He, L. L. Hu, and D. P. Chen, “Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding,” Laser Phys. 25(4), 045108 (2015).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Appl. (1)

R. Narro-Garcia, M. Arronte, J. Guerrero-Contreras, and E. Rodriguez, “Study of the pump absorption efficiency in D-shaped double clad optical fiber,” Opt. Appl. 42(3), 587–596 (2012).
[Crossref]

Opt. Commun. (3)

J. Wang, D. Yan, S. Xiong, B. Huang, and C. Li, “Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator,” Opt. Commun. 383, 355–358 (2017).
[Crossref]

A. P. Liu and K. Ueda, “The absorption characteristics of circular, offset, and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[Crossref]

J. M. Wang, C. Li, and D. P. Yan, “High power composite cavity fiber laser oscillator at 1120 nm,” Opt. Commun. 405, 318–322 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Science (1)

J. Nilsson and D. N. Payne, “High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref]

Other (2)

B. Shiner, “The Impact of Fiber Laser Technology on the World Wide Material Processing Market,” CLEO: Applications and Technology, AF2J.1 (2013).

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. E. D. H. G. Gapontsev, and P. Moulton, “Industrial grade 100 kW power CW fiber laser,” Advanced Solid-State Lasers Congress, ATh4A.2 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic configuration of the all-fiber laser oscillator.
Fig. 2.
Fig. 2. (a) Cross section and (b) 2D refractive index of Circular 20/400 µm LCA DCF.
Fig. 3.
Fig. 3. Absorption spectrum of (a) Octagonal 20/400 µm DCF and (b) Circular 20/400 µm LCA DCF.
Fig. 4.
Fig. 4. Core background attenuation spectrum of the Circular 20/400 µm LCA DCF.
Fig. 5.
Fig. 5. Spectrum of the SRS light observed from the output beam of the all-fiber laser oscillator.
Fig. 6.
Fig. 6. Spectrums of the all-fiber laser oscillator signal beam at the maximum output power.
Fig. 7.
Fig. 7. Output power of the all-fiber laser oscillator with a suitable 915 nm pump power injected.
Fig. 8.
Fig. 8. Laser beam quality result of the all-fiber laser oscillator at a power of 2.1 kW.
Fig. 9.
Fig. 9. Laser stability of Circular 20/400 µm LCA DCF using all-fiber laser oscillator at 2.1 kW.