Abstract

In this paper, the absorption characteristics of a hybrid structure composed of a black phosphorus (BP) nanostrip array based on localized surface plasmon resonance (LSPR) and a metal grating slit structure have been analyzed systematically. Firstly, we theoretically investigate light-matter interaction in different dimensions of BP nanostrip arrays along armchair and zigzag direction, revealing the absorption property and anisotropic plasmonic response. Besides, the transmission characteristics of the metal grating slit structure with different geometric dimensions are thoroughly analyzed by the transmission spectra and electric intensity distributions. At last, by combining the two structures, we increased the absorption of BP from 72% to 83.6% at 7.04 µm, and this hybrid BP structure demonstrates high absorption at mid-infrared wavelength regime, predicting a promising future for the directional dependent plasmonic devices based on two-dimensional (2D) materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dependent, plasmon-enhanced infrared transmission through gold nanoslits on monolayer black phosphorus

Guangsheng Deng, Sina Abedini Dereshgi, Xianglian Song, and Koray Aydin
J. Opt. Soc. Am. B 36(8) F109-F116 (2019)

Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance

Yan Huang, Xinyi Liu, Yan Liu, Yao Shao, Siqing Zhang, Cizhe Fang, Genquan Han, Jincheng Zhang, and Yue Hao
Opt. Mater. Express 9(2) 739-750 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  2. F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref]
  3. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
    [Crossref]
  4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref]
  5. Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
    [Crossref]
  6. F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
    [Crossref]
  7. S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
    [Crossref]
  8. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
    [Crossref]
  9. S. Sekwao and J. P. Leburton, “Electrical tunability of soft parametric resonance by hot electrons in graphene,” Appl. Phys. 103(14), 143108 (2013).
    [Crossref]
  10. M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
    [Crossref]
  11. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
    [Crossref]
  12. J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref]
  13. A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
    [Crossref]
  14. H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref]
  15. J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  16. F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
    [Crossref]
  17. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref]
  18. Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
    [Crossref]
  19. C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
    [Crossref]
  20. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref]
  21. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
    [Crossref]
  22. L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
    [Crossref]
  23. H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
    [Crossref]
  24. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
    [Crossref]
  25. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
    [Crossref]
  26. M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
    [Crossref]
  27. M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
    [Crossref]
  28. Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
    [Crossref]
  29. Ø Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in vander Waals layered narrow bandgap black phosphorus,” J. Phys.: Condens. Matter 22(1), 015502 (2010).
    [Crossref]
  30. S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
    [Crossref]
  31. Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
    [Crossref]
  32. J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
    [Crossref]
  33. X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
    [Crossref]
  34. Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
    [Crossref]
  35. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
    [Crossref]
  36. N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
    [Crossref]
  37. X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
    [Crossref]
  38. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref]
  39. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref]
  40. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
    [Crossref]
  41. D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
    [Crossref]
  42. K. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
    [Crossref]
  43. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref]
  44. D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
    [Crossref]
  45. A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
    [Crossref]
  46. R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
    [Crossref]
  47. Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
    [Crossref]
  48. X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  49. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
    [Crossref]
  50. A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
    [Crossref]
  51. F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
    [Crossref]
  52. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
    [Crossref]
  53. C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
    [Crossref]
  54. J. G. Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength Apertures,” Opt. Express 13(3), 847–859 (2005).
    [Crossref]
  55. Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
    [Crossref]
  56. J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
    [Crossref]
  57. C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).
  58. T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
    [Crossref]
  59. T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [Crossref]
  60. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [Crossref]
  61. S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref]
  62. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
    [Crossref]

2019 (1)

2018 (4)

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

J. Nong, W. Wei, W. Wang, G. Lan, Z. Shang, J. Yi, and L. Tang, “Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons,” Opt. Express 26(2), 1633–1644 (2018).
[Crossref]

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

2017 (8)

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref]

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

2016 (8)

A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref]

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

2015 (3)

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref]

K. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

2014 (12)

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

2013 (3)

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

S. Sekwao and J. P. Leburton, “Electrical tunability of soft parametric resonance by hot electrons in graphene,” Appl. Phys. 103(14), 143108 (2013).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

2012 (5)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

2011 (2)

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

2010 (3)

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Ø Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in vander Waals layered narrow bandgap black phosphorus,” J. Phys.: Condens. Matter 22(1), 015502 (2010).
[Crossref]

2009 (1)

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

2008 (1)

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

2007 (1)

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
[Crossref]

2005 (1)

2003 (4)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref]

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

2001 (1)

1983 (1)

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

1981 (1)

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Ajayan, P. M.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Akaham, Y.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Alonso-González, M.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Alù, A.

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref]

Badioli, C. J.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Bai, J. W.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Bao, Z.

Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Barnes, W. L.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Bolivar, P. H.

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

Butler, S. Z.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Cao, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Cappelluti, E.

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Castellanos Gomez, A.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

Castellanos-Gomez, A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Chen, C.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Chen, X.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Cheng, Z. Z.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Chin, M. L.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

Conrad, N. J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Cui, Y.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Deng, Y.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Deng, Y. X.

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Dresselhaus, M. S.

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

Du, Y.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Du, Y. C.

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

Duan, X. F.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Endo, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Engel, M.

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

Fan, S.

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref]

Fang, C.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Farmer, D. B.

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

Ferrari, A.

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Flage-Larsen, E.

Ø Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in vander Waals layered narrow bandgap black phosphorus,” J. Phys.: Condens. Matter 22(1), 015502 (2010).
[Crossref]

Fo, Q.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Gan, Q.

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

Gan, X.

Gao, M.

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

García de Abajo, F. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
[Crossref]

Garciavidal, F. J.

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Garcia-Vidal, F. J.

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Goldberger, J. E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Gómez Rivas, J.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Gomez-Diaz, J. S.

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Gong, Y.

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Grassi, R.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Guo, J.

K. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Guo, R.

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Gupta, J. A.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Gutiérrez, H. R.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Han, B.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Han, G.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Han, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Han, S. J.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Hanson, G. W.

A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref]

Hao, Y.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Hasdeo, E. H.

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

Heinz, T. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Hendry, E.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Hollen, S. M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Hong, S. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Hu, Z.

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Huang, H.

Huang, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Huang, S.

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

Huang, Y.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Huth, S.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Isaac, T. H.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Ismach, A. F.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Janke, C.

Ji, D.

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

Ji, W.

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Jiang, H.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Jiang, Y.

Johnston-Halperin, E.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Kanzaki, H.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Katsnelson, M. I.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

Ke, S.

Khaliji, K.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Kobayashi, K.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Kong, X.

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Koppens, F. H.

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Koppens, F. H. L.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Koppens, Frank H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Kuno, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Kurz, H.

Lam, K.

K. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Lan, G.

Lan, S.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

Leburton, J. P.

S. Sekwao and J. P. Leburton, “Electrical tunability of soft parametric resonance by hot electrons in graphene,” Appl. Phys. 103(14), 143108 (2013).
[Crossref]

Lei, M.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Lezec, H. J.

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Li, M.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Li, Z. Q.

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Liang, L.

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Lin, Y.

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

Ling, X.

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref]

Liu, C.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Liu, H.

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Liu, L. X.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Liu, X.

Liu, Y.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Long, H.

Lou, J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Low, T.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Lu, H.

Lu, P.

Lu, W.

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Lui, S. C. H.

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Luo, Z.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Mak, K. F.

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Mao, D.

Mao, N.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Martinmoreno, L.

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Martin-Moreno, L.

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Maruyama, Y.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Mazurenko, V. G.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

Melcon, A. A.

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Mikuni, A.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Mohr, D. A.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Mori, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Mueller, T.

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Muro, K.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Najmaei, S.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Narita, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Nemilentsau, A.

A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref]

Ni, X.

Nong, J.

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Osmond, F.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Ouyang, C.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

OuYang, F.

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Pan, L.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

Pellerin, K. M.

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

Peng, R.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

Piper, J. R.

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Plashnitsa, V. V.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Polini, M.

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
[Crossref]

Prishchenko, D. A.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

Prytz, Ø

Ø Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in vander Waals layered narrow bandgap black phosphorus,” J. Phys.: Condens. Matter 22(1), 015502 (2010).
[Crossref]

Qiao, J.

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Qin, S.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rivas, J. G.

Robinson, R. D.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Rudenko, A. N.

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

Ruoff, R. S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Salahuddin, S.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Sambles, J. R.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Seki, M.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Sekwao, S.

S. Sekwao and J. P. Leburton, “Electrical tunability of soft parametric resonance by hot electrons in graphene,” Appl. Phys. 103(14), 143108 (2013).
[Crossref]

Serrano, D. C.

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Shan, J.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Shang, Z.

Shao, Y.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

Shi, L.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Shi, S.

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

Song, H.

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

Spencer, M. G.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Steele, G. A.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Steiner, M.

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Suga, S.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Suh, W.

Suzuki, S.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Tang, J.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Tang, L.

Tang, W.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Taniguchi, M.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Tanuma, S.

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
[Crossref]

Terrones, M.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Thio, T.

Thongrattanasiri, P.

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Tsang, H. K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Tsukiyama, Y.

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

van der Zant, H. S.

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

van der Zant, H. S. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Vitiello, M.

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Wang, B.

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Wang, J.

Wang, K.

Wang, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Wang, W.

Wang, X.

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Wang, X. M.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Wei, W.

Windl, W.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Wu, H.

Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Wu, J.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Xia, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

Xia, Q.

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, J.

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Xie, L.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Xing, H.

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Xiong, F.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Xu, H.

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Xu, J. B.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, Q.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Xu, X.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Yang, F.

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Ye, P. D.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

Yi, J.

Yoo, D.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

Youngblood, N.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Yu, A.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Yu Nikitin, A.

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Yuan, X.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Zhang, H.

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Zhang, J.

Y. Huang, X. Liu, Y. Liu, Y. Shao, S. Zhang, C. Fang, G. Han, J. Zhang, and Y. Hao, “Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance,” Opt. Mater. Express 9(2), 739–750 (2019).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

Zhang, N.

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

Zhang, S.

Zhang, W.

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Zhao, J.

Zhou, H. L.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

Zhou, Y.

Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Zhu, J.

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Zhu, Z.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

2D Mater. (1)

D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, “Coulomb interactions and screening effects in few-layer black phosphorus: a tight-binding consideration beyond the long-wavelength limit,” 2D Mater. 4(2), 025064 (2017).
[Crossref]

ACS Nano (4)

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano 7(4), 2898–2926 (2013).
[Crossref]

Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, “Device Perspective for Black Phosphorus Field-Effect Transistors Contact Resistance, Ambipolar and Scaling,” ACS Nano 8(10), 10035–10042 (2014).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, Frank H. L. Koppens, and F. J. García de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

ACS Photonics (2)

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active Tuning of Midinfrared Surface Plasmon Resonance and Its Hybridization in Black Phosphorus Sheet Array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Adv. Opt. Photonics (1)

X. Wang and S. Lan, “Optical properties of black phosphorus,” Adv. Opt. Photonics 8(4), 618–655 (2016).
[Crossref]

Appl. Phys. (1)

S. Sekwao and J. P. Leburton, “Electrical tunability of soft parametric resonance by hot electrons in graphene,” Appl. Phys. 103(14), 143108 (2013).
[Crossref]

Appl. Phys. Lett. (2)

Z. Bao, H. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

F. J. Garciavidal, L. Martinmoreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003).
[Crossref]

IEEE Photonics J. (2)

Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, and W. Zhang, “Anisotropic plasmonic response of black phosphorus nanostrip in terahertz metamaterials,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

C. Fang, Y. Liu, G. Han, Y. Shao, Y. Huang, and Y. Hao, “Porous Structures for Absorption Enhancement in Black Phosphorus Active Layer Based on Plasmonic Nanocavity,” IEEE Photonics J. 9(6), 4800210 (2017).

J. Am. Chem. Soc. (1)

N. Mao, J. Tang, L. Xie, J. Wu, B. Han, and J. Zhang, “Optical Anisotropy of Black Phosphorus in the Visible Regime,” J. Am. Chem. Soc. 138(1), 300–305 (2016).
[Crossref]

J. Appl. Phys. (2)

K. Lam and J. Guo, “Plasmonics in strained monolayer black phosphorus,” J. Appl. Phys. 117(11), 113105 (2015).
[Crossref]

Y. Du, C. Ouyang, S. Shi, and M. Lei, “Ab initio studies on atomic and electronic structures of black phosphorus,” J. Appl. Phys. 107(9), 093718 (2010).
[Crossref]

J. Opt. (2)

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

D. C. Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Total light absorption in plasmonic nanostructures,” J. Opt. A: Pure Appl. Opt. 9(9), S458–S462 (2007).
[Crossref]

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4(5), S154–S160 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys.: Condens. Matter (1)

Ø Prytz and E. Flage-Larsen, “The influence of exact exchange corrections in vander Waals layered narrow bandgap black phosphorus,” J. Phys.: Condens. Matter 22(1), 015502 (2010).
[Crossref]

Nano Lett. (9)

M. Engel, M. Steiner, and P. Avouris, “Black phosphorus photodetector for multispectral, high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref]

H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, and S. J. Han, “Black phosphorus radio-frequency transistors,” Nano Lett. 14(11), 6424–6429 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref]

X. Ling, S. Huang, E. H. Hasdeo, L. Liang, and M. S. Dresselhaus, “Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus,” Nano Lett. 16(4), 2260–2267 (2016).
[Crossref]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, and M. Li, “Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Mid-infrared Electro-Optic Modulation in Few-layer Black Phosphorus,” Nano Lett. 17(10), 6315–6320 (2017).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Nanoscale (1)

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Nanotechnology (1)

F. OuYang, J. Xiao, R. Guo, H. Zhang, and H. Xu, “Transport properties of T-shaped and crossed junctions based on graphene nanoribbons,” Nanotechnology 20(5), 055202 (2009).
[Crossref]

Nat. Commun. (3)

M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. van der Zant, and A. Castellanos Gomez, “Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating,” Nat. Commun. 5(1), 4651 (2014).
[Crossref]

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2(1), 579 (2011).
[Crossref]

J. Qiao, X. Kong, Z. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 4475 (2014).
[Crossref]

Nat. Nanotechnol. (3)

H. Yan, X. Li, B. Chandra, G. Tulevski, and F. Xia, “Tunable infrared plasmonic devices using graphene insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Nat. Photonics (3)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

X. M. Wang, Z. Z. Cheng, K. Xu, H. K. Tsang, and J. B. Xu, “High Responsitivity Graphene/Silicon Heterostructure Waveguide Photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsitivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Nat. Phys. (1)

S. C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, “Observation of an electrically tunable band gap in trilayer graphene,” Nat. Phys. 7(12), 944–947 (2011).
[Crossref]

Nature (1)

C. J. Badioli, M. Alonso-González, P. Thongrattanasiri, S. Huth, F. Osmond, and F. H. L. Koppens, “Optical Nano-Imaging of GateTunable Graphene Plasmons,” Nature 487(7405), 77–81 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Photonics News (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14(11), 44–48 (2003).
[Crossref]

Phys. Rev. B (2)

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

A. Yu Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012).
[Crossref]

Phys. Rev. Lett. (3)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

A. Nemilentsau, T. Low, and G. W. Hanson, “Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics,” Phys. Rev. Lett. 116(6), 066804 (2016).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Physica (2)

S. Narita, Y. Akaham, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, and H. Kanzaki, “Electrical and optical properties of black phosphorus single crystals,” Physica 117-118, 422–424 (1983).
[Crossref]

Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, “Synthesis and some properties of black phosphorus single crystals,” Physica 105(1-3), 99–102 (1981).
[Crossref]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martinmoreno, F. J. Garciavidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Small Methods (1)

M. Gao, N. Zhang, D. Ji, H. Song, Y. Liu, and Q. Gan, “Super absorbing metasurfaces with hybrid Ag-Au nanostructures for surface-enhanced Raman spectroscopy sensing of drugs and chemicals,” Small Methods 2(7), 1800045 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of BP crystal structure. (b)The three-dimensional schematic diagram of BP nanostrip array.
Fig. 2.
Fig. 2. (a) Absorption spectra of the monolayer BP nanostrip array with quartz along x direction, y direction and without quartz at the wavelength of 6-30 µm. The thickness of the quartz between BP and metal mirror is 3 µm. The width of the BP strip is 150 nm and the period is 300 nm. (b) Absorption spectra of the monolayer BP nanostrip along x direction at the wavelength of 6-30 µm. The thickness of the quartz between BP and metal mirror is 3 µm and 6 µm, respectively. The width of the BP strip is 150 nm and the period is 300 nm. Electric field intensity distributions with the fixed thickness of 6 µm (c) and 3 µm (d). Inset is the side view of the proposed structure. The width of the BP strip is 150 nm and the period is 300 nm. (e) Calculated total electric field intensity for one BP nanostrip unit cell in Y-Z plane. The thickness of the quartz between BP and metal mirror is 6 µm. The width of the BP strip is 150 nm and the period is 300 nm. (f). Absorption spectra of BP nanostrip arrays for various values of Fermi levels between 0.2 eV and 1 eV. The thickness of the quartz between BP and metal mirror is 3 µm. The width of the BP strip is 150 nm and the period is 300 nm.
Fig. 3.
Fig. 3. (a) Absorption spectra of the monolayer BP nanostrip array along x direction at the wavelength of 6-30 µm at six different widths (i.e., width = 50, 70, 90, 110, 130 and 150 µm) with a fixed thickness of the quartz of 6 µm. (b) The enlarged view of the first absorption peak in dotted box of Fig. 3(a).
Fig. 4.
Fig. 4. (a) Schematic diagram of metal grating slit structure, f is the period of grating, h is the height of the grating, g is the width of slit and H is the height of slit. Inset is the side view of the gap, $\theta $ presents the angle of incident light. (b) The front view of input grating structure and (c) output grating structure. (d) Transmission spectral of the metal grating slit of three different structures. (e)Transmission spectral of the metal grating slit at the wavelength of 6-20 µm with three different periods (i.e., f = 1, 2, and 3 µm) of the grating. (f) Transmission spectral of the metal grating slit at the wavelength of 6-20 µm with four different heights (i.e., h = 2, 2.5, 3, and 3.5 µm) of the grating. (g) Transmission spectral of the metal grating slit at the wavelength of 6-20 µm with three different slit widths (i.e., g = 1, 3, and 5 µm) of the slit. (h) Transmission spectral for various incident angles of the metal grating slit. The yellow dotted line is the fitting result of coupled-mode theory of metal grating structure in the case of vertical incidence.
Fig. 5.
Fig. 5. The electric field distribution in the X-Z plane at a wavelength of (a) 6.56µm and (b) 12.3µm when g = 1µm. The electric field distribution in the X-Z plane at a wavelength of (c) 10.5µm and (d) 14.3µm when g = 5µm.
Fig. 6.
Fig. 6. (a) Schematic diagram of the hybrid structure. (b) Front view of this hybrid structure, d is the distance between the BP nanostrip array and the metal grating slit structure. (c) Absorption spectra of the hybrid structure along x direction at the wavelength of 6-20 µm with three different distances (i.e., d = 1, 2 and 3 µm). (d) The absorption spectra of the BP nanostrip array, the transmission spectra of the metal grating slit structure and the absorption spectra of the hybrid structure. (e) The electric field distribution in the X-Z plane at the absorption peak of 8.9µm in Fig. 6(d). (f) Absorption spectra of the hybrid structure with different materials (i.e., air and MgF2) between the BP nanostrip and the Au grating.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε j = ε r + i σ j s ω ε 0
σ j = i D j π ( ω + i η )
D j = π e 2 n m j
m x = 2 2 γ 2 Δ + η c , m y = 2 v c
n = ( π 2 ) 1 ( m x m y ) 0.5 k B T ln [ 1 + exp ( E F / k B T ) ]
λ s p j = c 2 π m j ε 0 ( ε 1 + ε 2 ) p ζ n e 2
S  =  C  +  d k j ( ω ω 0 ) + 1 / 1 τ τ
S 1  = exp ( j ϑ ) { [ r j v j v r ] + 1 / 1 τ τ j ( ω ω 0 ) + 1 / 1 τ τ [ ( r ± j v ) ( r ± j v ) ( r ± j v ) ( r ± j v ) ] }
T  = 1 -  r 2 ( ω ω 0 ) 2 + v 2 ( 1 / 1 τ τ ) 2 + 2 r v ( ω ω 0 ) ( 1 / 1 τ τ ) ( ω ω 0 ) 2 + ( 1 / 1 τ τ ) 2