Abstract

This paper addresses one of the key issues in the scientific community of Si photonics: thin-film quality and the light emission properties of band-engineered n+ Germanium-on-Silicon (Ge-on-Si). Compared to the traditional delta doping approach, which was utilized in the first electrically-pumped Ge-on-Si lasers, we offer an n+ Ge-on-Si thin film with better material quality and higher carrier injection efficiency grown by metal-organic chemical vapor deposition (MOCVD). The impacts of thermal cycle annealing and Si substrate offcut on the thin film quality were investigated, including surface roughness, strain, threading dislocation density, Si-Ge interdiffusion, and dopant diffusion. It was revealed that: 1) MOCVD overcomes the outdiffision issue of n-type dopants by having the dopant peaks at the bottom of the Ge films; 2) the characterization of the light emission properties of these MOCVD n+ Ge-on-Si samples (1.0 × 1019 cm−3 doped) compared to delta-doped ultra-high vacuum chemical vapor deposition (UHVCVD) Ge, showing comparable photoluminescence (PL) spectral intensity at 1/4 of the doping level; 3) Detailed PL spectral analyses showed that population inversion from the direct gap transition has been achieved, and the injected electron density in the direct Γ valley is comparable to that of the delta-doped sample even though the n-type doping level is 75% less; and 4) Experimental evidences that Si-Ge interdiffusion has a much larger impact on PL intensity than threading dislocation density in the range of 108-109/cm3. These results indicate that MOCVD n+ Ge is very promising to reduce the threshold of Ge gain media on Si notably.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impacts of doping on epitaxial germanium thin film quality and Si-Ge interdiffusion

Guangnan Zhou, Kwang Hong Lee, Dalaver H. Anjum, Qiang Zhang, Xixiang Zhang, Chuan Seng Tan, and Guangrui (Maggie) Xia
Opt. Mater. Express 8(5) 1117-1131 (2018)

Strained germanium thin film membrane on silicon substrate for optoelectronics

Donguk Nam, Devanand Sukhdeo, Arunanshu Roy, Krishna Balram, Szu-Lin Cheng, Kevin Chih-Yao Huang, Ze Yuan, Mark Brongersma, Yoshio Nishi, David Miller, and Krishna Saraswat
Opt. Express 19(27) 25866-25872 (2011)

High active carrier concentration in n-type, thin film Ge using delta-doping

Rodolfo E. Camacho-Aguilera, Yan Cai, Jonathan T. Bessette, Lionel C. Kimerling, and Jurgen Michel
Opt. Mater. Express 2(11) 1462-1469 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  2. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y. H. Kuo, T. I. Kamins, and J. S. Harris, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007).
    [Crossref]
  3. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
    [Crossref]
  4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  5. S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
    [Crossref]
  6. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
    [Crossref]
  7. D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
    [Crossref]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref]
  9. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  10. H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  11. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [Crossref]
  12. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref]
  13. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  14. Y. Cai and R. Camacho-Aguilera, “High n-type doped germanium for electrically pumped Ge laser,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper IM3A.5.
  15. R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Ki-merling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
    [Crossref]
  16. R. E. Camacho-Aguilera, “Ge-on-Si laser for silicon photonics,” Thesis, Massachusetts Institute of Technology, 2013.
  17. M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
    [Crossref]
  18. X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.
  19. J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
    [Crossref]
  20. R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
    [Crossref]
  21. S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
    [Crossref]
  22. G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
    [Crossref]
  23. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
    [Crossref]
  24. G. Zhou, K. H. Lee, D. H. Anjum, Q. Zhang, X. Zhang, C. S. Tan, and Guangrui (Maggie) Xia, “Impacts of Doping on Epitaxial Germanium Thin Film Quality and Si-Ge Interdiffusion,” Opt. Mater. Express 8(5), 1117–1131 (2018).
    [Crossref]
  25. F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
    [Crossref]
  26. F. Cai, D. H. Anjum, X. Zhang, and G. Xia, “Study of Si-Ge interdiffusion with phosphorus doping,” J. Appl. Phys. 120(16), 165108 (2016).
    [Crossref]
  27. K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
    [Crossref]
  28. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
    [Crossref]
  29. J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
    [Crossref]
  30. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
    [Crossref]
  31. D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
    [Crossref]
  32. Private discussions with Drs. Clement Porret and Andreas Schulze at IMEC.
  33. A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
    [Crossref]
  34. A. Schulze et al., “Non-destructive characterization of extended crystalline defects in confined semiconductor device structures,” Nanoscale 10(15), 7058–7066 (2018).
    [Crossref]
  35. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
    [Crossref]
  36. S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
    [Crossref]
  37. T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
    [Crossref]
  38. X. H. Xia and J. J. Kelly, “Chemical etching and anodic oxidation of (100) silicon in alkaline solution: the role of applied potential,” Phys. Chem. Chem. Phys. 3(23), 5304–5310 (2001).
    [Crossref]
  39. Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
    [Crossref]
  40. K. Sumino and I. Yonenaga, “Interactions of impurities with dislocations: mechanical effects,” in Solid State Phenomena (Trans Tech Publ, 2002), pp. 145–176.
  41. J. S. Christensen, “Dopant diffusion in Si and SiGe,” Doctoral dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2004.
  42. R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
    [Crossref]
  43. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
    [Crossref]
  44. C. Benoit à la Guillaume and J. Cernogora, “Radiative recombination in highly doped germanium,” Phys. Status Solidi B 35(2), 599–612 (1969).
    [Crossref]
  45. J. Wagner and L. Viña, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B 30(12), 7030–7036 (1984).
    [Crossref]
  46. P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

2018 (3)

G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
[Crossref]

A. Schulze et al., “Non-destructive characterization of extended crystalline defects in confined semiconductor device structures,” Nanoscale 10(15), 7058–7066 (2018).
[Crossref]

G. Zhou, K. H. Lee, D. H. Anjum, Q. Zhang, X. Zhang, C. S. Tan, and Guangrui (Maggie) Xia, “Impacts of Doping on Epitaxial Germanium Thin Film Quality and Si-Ge Interdiffusion,” Opt. Mater. Express 8(5), 1117–1131 (2018).
[Crossref]

2016 (2)

F. Cai, D. H. Anjum, X. Zhang, and G. Xia, “Study of Si-Ge interdiffusion with phosphorus doping,” J. Appl. Phys. 120(16), 165108 (2016).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

2015 (3)

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

2014 (1)

R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
[Crossref]

2013 (1)

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

2012 (5)

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Ki-merling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
[Crossref]

2011 (2)

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
[Crossref]

2010 (4)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2009 (1)

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

2007 (3)

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

2005 (1)

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

2004 (2)

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

2003 (1)

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

2001 (1)

X. H. Xia and J. J. Kelly, “Chemical etching and anodic oxidation of (100) silicon in alkaline solution: the role of applied potential,” Phys. Chem. Chem. Phys. 3(23), 5304–5310 (2001).
[Crossref]

1999 (1)

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

1995 (2)

T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
[Crossref]

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

1993 (2)

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

1991 (1)

D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
[Crossref]

1984 (1)

J. Wagner and L. Viña, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B 30(12), 7030–7036 (1984).
[Crossref]

1969 (1)

C. Benoit à la Guillaume and J. Cernogora, “Radiative recombination in highly doped germanium,” Phys. Status Solidi B 35(2), 599–612 (1969).
[Crossref]

Abbadie, A.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Anjum, D. H.

Anstis, G. R.

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Apetz, R.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

Baldassare, L.

G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
[Crossref]

Bao, S.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Bedell, S. W.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

Benoit à la Guillaume, C.

C. Benoit à la Guillaume and J. Cernogora, “Radiative recombination in highly doped germanium,” Phys. Status Solidi B 35(2), 599–612 (1969).
[Crossref]

Bensahel, D.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Bessette, J. T.

Billon, T.

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Bogumilowicz, Y.

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

Boucaud, P.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Boulmer, J.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Bowers, J. E.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Cai, F.

F. Cai, D. H. Anjum, X. Zhang, and G. Xia, “Study of Si-Ge interdiffusion with phosphorus doping,” J. Appl. Phys. 120(16), 165108 (2016).
[Crossref]

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Cai, Y.

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Ki-merling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref]

Y. Cai and R. Camacho-Aguilera, “High n-type doped germanium for electrically pumped Ge laser,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper IM3A.5.

Camacho-Aguilera, R.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

Y. Cai and R. Camacho-Aguilera, “High n-type doped germanium for electrically pumped Ge laser,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper IM3A.5.

Camacho-Aguilera, R. E.

Cams, T. K.

T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
[Crossref]

Cannon, D. D.

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Cernogora, J.

C. Benoit à la Guillaume and J. Cernogora, “Radiative recombination in highly doped germanium,” Phys. Status Solidi B 35(2), 599–612 (1969).
[Crossref]

Chen, C.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Chen, K. M.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Chen, S.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Christensen, J. S.

J. S. Christensen, “Dopant diffusion in Si and SiGe,” Doctoral dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2004.

Czernuszka, J. T.

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Damlencourt, J. F.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

Danielson, D. T.

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Débarre, D.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Dieker, C.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

Dong, Y.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Enuha, U. U.

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

Fidaner, O.

Fitzgerald, E. A.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Fukatsu, S.

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Giliberti, V.

G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
[Crossref]

Han, Z.

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

Harris, J. S.

Hartmann, A.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

Hartmann, J. M.

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Hirsch, P. B.

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Holliger, P.

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Houghton, D. C.

D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
[Crossref]

Huang, S.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Huang, S. H.

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

Huang, W.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Huang, W. L.

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

Impellizzeri, G.

R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
[Crossref]

Ishikawa, Y.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Jiang, Q.

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jongthammanurak, S.

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Kamins, T. I.

Kelly, J. J.

X. H. Xia and J. J. Kelly, “Chemical etching and anodic oxidation of (100) silicon in alkaline solution: the role of applied potential,” Phys. Chem. Chem. Phys. 3(23), 5304–5310 (2001).
[Crossref]

Kermarrec, O.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Kim, J.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

Kimerling, L. C.

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref]

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Ki-merling, L. C.

Koch, T. L.

Kociniewski, T.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Kuo, Y. H.

Kurdi, M. E.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Lai, H.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Lansberg, P. T.

P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

Laval, S.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Lee, K. H.

G. Zhou, K. H. Lee, D. H. Anjum, Q. Zhang, X. Zhang, C. S. Tan, and Guangrui (Maggie) Xia, “Impacts of Doping on Epitaxial Germanium Thin Film Quality and Si-Ge Interdiffusion,” Opt. Mater. Express 8(5), 1117–1131 (2018).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Lee, K. K.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Li, C.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Lim, D. R.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Liu, C. W.

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

Liu, H.

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, J.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref]

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Long, N. J.

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Lu, F. L.

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

Luan, H. C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Luan, H.-C.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Lüth, H.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

Maruizumi, T.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Michel, J.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Ki-merling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Milazzo, R.

R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
[Crossref]

Murao, Y.

Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
[Crossref]

Nakagawa, K.

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

Napolitani, E.

R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
[Crossref]

Ngo, T.-P.

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

Nishida, A.

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

Nishida, K.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Noël, J.-P.

D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
[Crossref]

Pan, D.

Papon, A. M.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Patel, N.

Pellegrini, G.

G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

Rolland, G.

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

Romagnoli, M.

Roth, J. E.

Rowell, N. L.

D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
[Crossref]

Sadana, D. K.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

Sandland, J. G.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Sawano, K.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Schaevitz, R. K.

Schulze, A.

A. Schulze et al., “Non-destructive characterization of extended crystalline defects in confined semiconductor device structures,” Nanoscale 10(15), 7058–7066 (2018).
[Crossref]

Shiraki, Y.

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

Shi-raki, Y.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Sumino, K.

K. Sumino and I. Yonenaga, “Interactions of impurities with dislocations: mechanical effects,” in Solid State Phenomena (Trans Tech Publ, 2002), pp. 145–176.

Sun, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref]

Taishi, T.

Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
[Crossref]

Tan, C. S.

G. Zhou, K. H. Lee, D. H. Anjum, Q. Zhang, X. Zhang, C. S. Tan, and Guangrui (Maggie) Xia, “Impacts of Doping on Epitaxial Germanium Thin Film Quality and Si-Ge Interdiffusion,” Opt. Mater. Express 8(5), 1117–1131 (2018).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Tan, Y. H.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Tanner, M. O.

T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
[Crossref]

Thomson, D.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tokumoto, Y.

Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Usami, N.

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

Vescan, L.

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

Viña, L.

J. Wagner and L. Viña, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B 30(12), 7030–7036 (1984).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Wada, K.

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Wagner, J.

J. Wagner and L. Viña, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B 30(12), 7030–7036 (1984).
[Crossref]

Wang, B.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Wang, C.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Wang, K. L.

T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
[Crossref]

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref]

Wilkinson, A. J.

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Xia, G.

F. Cai, D. H. Anjum, X. Zhang, and G. Xia, “Study of Si-Ge interdiffusion with phosphorus doping,” J. Appl. Phys. 120(16), 165108 (2016).
[Crossref]

Xia, G. M.

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Xia, Guangrui (Maggie)

Xia, X. H.

X. H. Xia and J. J. Kelly, “Chemical etching and anodic oxidation of (100) silicon in alkaline solution: the role of applied potential,” Phys. Chem. Chem. Phys. 3(23), 5304–5310 (2001).
[Crossref]

Xu, X.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Yonenaga, I.

K. Sumino and I. Yonenaga, “Interactions of impurities with dislocations: mechanical effects,” in Solid State Phenomena (Trans Tech Publ, 2002), pp. 145–176.

Yoon, S. F.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Zhang, Q.

Zhang, X.

Zheng, Y.

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Zhou, G.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

ACS Photonics (1)

G. Pellegrini, L. Baldassare, and V. Giliberti et al., “Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared,” ACS Photonics 5(9), 3601–3607 (2018).
[Crossref]

AIP Adv. (1)

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6(2), 025028 (2016).
[Crossref]

Appl. Phys. Lett. (8)

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, and L. C. Kimerling, “Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates,” Appl. Phys. Lett. 91(25), 252111 (2007).
[Crossref]

M. E. Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett. 94(19), 191107 (2009).
[Crossref]

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

S. Fukatsu, N. Usami, Y. Shiraki, A. Nishida, and K. Nakagawa, “High-temperature operation of strained Si0.65Ge0.35/Si(111) p-type multiple-quantum-well light-emitting diode grown by solid source Si molecu-lar-beam epitaxy,” Appl. Phys. Lett. 63(7), 967–969 (1993).
[Crossref]

R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Lüth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett. 66(4), 445–447 (1995).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

R. E. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct bandgap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

S. H. Huang, F. L. Lu, W. L. Huang, and C. W. Liu, “The 3×1020 cm−3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing,” IEEE Electron Device Lett. 36(11), 1114–1117 (2015).
[Crossref]

J. Appl. Phys. (4)

F. Cai, D. H. Anjum, X. Zhang, and G. Xia, “Study of Si-Ge interdiffusion with phosphorus doping,” J. Appl. Phys. 120(16), 165108 (2016).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, and S. Laval, “Reduced pressure–chemical vapor deposition of Ge thick layers on Si (001) for 1.3–1.55-µm photodetection,” J. Appl. Phys. 95(10), 5905–5913 (2004).
[Crossref]

R. Milazzo, E. Napolitani, and G. Impellizzeri et al., “N-type doping of Ge by As implantation and excimer laser annealing,” J. Appl. Phys. 115(5), 053501 (2014).
[Crossref]

Y. Murao, T. Taishi, and Y. Tokumoto et al., “Impurity effects on the generation and velocity of dislocations in Ge[J],” J. Appl. Phys. 109(11), 113502 (2011).
[Crossref]

J. Cryst. Growth (1)

J. M. Hartmann, J. F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si (001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274(1-2), 90–99 (2005).
[Crossref]

J. Electrochem. Soc. (1)

T. K. Cams, M. O. Tanner, and K. L. Wang, “Chemical Etching of Si1−xGex in HF:H2O2: CH3COOH,” J. Electrochem. Soc. 142(4), 1260–1266 (1995).
[Crossref]

Light: Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mater. Sci. Eng., B (1)

D. C. Houghton, J.-P. Noël, and N. L. Rowell, “Electro-luminescence and photoluminescence from Si1−xGex alloys grown on (100) silicon by molecular beam epi-taxy,” Mater. Sci. Eng., B 9(1-3), 237–244 (1991).
[Crossref]

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3(3), 1782–1802 (2010).
[Crossref]

Nanoscale (1)

A. Schulze et al., “Non-destructive characterization of extended crystalline defects in confined semiconductor device structures,” Nanoscale 10(15), 7058–7066 (2018).
[Crossref]

Nat. Photonics (4)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, and F. Tutu et al., “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Philos. Mag. A (1)

A. J. Wilkinson, G. R. Anstis, J. T. Czernuszka, N. J. Long, and P. B. Hirsch, “Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon,” Philos. Mag. A 68(1), 59–80 (1993).
[Crossref]

Phys. Chem. Chem. Phys. (1)

X. H. Xia and J. J. Kelly, “Chemical etching and anodic oxidation of (100) silicon in alkaline solution: the role of applied potential,” Phys. Chem. Chem. Phys. 3(23), 5304–5310 (2001).
[Crossref]

Phys. Rev. B (2)

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B 70(15), 155309 (2004).
[Crossref]

J. Wagner and L. Viña, “Radiative recombination in heavily doped p-type germanium,” Phys. Rev. B 30(12), 7030–7036 (1984).
[Crossref]

Phys. Status Solidi B (1)

C. Benoit à la Guillaume and J. Cernogora, “Radiative recombination in highly doped germanium,” Phys. Status Solidi B 35(2), 599–612 (1969).
[Crossref]

Semicond. Sci. Technol. (1)

F. Cai, Y. Dong, Y. H. Tan, C. S. Tan, and G. M. Xia, “Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon,” Semicond. Sci. Technol. 30(10), 105008 (2015).
[Crossref]

Thin Solid Films (2)

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai, and S. Chen, “Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template,” Thin Solid Films 520(6), 2307–2310 (2012).
[Crossref]

Other (7)

K. Sumino and I. Yonenaga, “Interactions of impurities with dislocations: mechanical effects,” in Solid State Phenomena (Trans Tech Publ, 2002), pp. 145–176.

J. S. Christensen, “Dopant diffusion in Si and SiGe,” Doctoral dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2004.

P. T. Lansberg, Recombination in Semiconductors (Cambridge University Press, Cambridge, 1991).

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shi-raki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in Silicon-Germanium Technology and De-vice Meeting (ISTDM), 2014 7th International, 2014, pp. 135–136.

Private discussions with Drs. Clement Porret and Andreas Schulze at IMEC.

R. E. Camacho-Aguilera, “Ge-on-Si laser for silicon photonics,” Thesis, Massachusetts Institute of Technology, 2013.

Y. Cai and R. Camacho-Aguilera, “High n-type doped germanium for electrically pumped Ge laser,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper IM3A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagrams of the 6 samples grown by MOCVD. X stands for As or P.
Fig. 2.
Fig. 2. HRXRD results of the samples without annealing. The results show that the Ge layers are almost fully strained relaxed. For Ge-on-offcut-Si samples, to exclude the offcut impact on the XRD peaks, the incident X-ray directions were chosen to be perpendicular to the plane formed by the wafer surface normal and the (001) plane normal vectors.
Fig. 3.
Fig. 3. Optical images for EPD measurements. (a) Sample A-NA-on with 15 s etching; (b) Sample A-NA-off with 15 s etching; (c) Sample P-NA-on with 15s etching; and (d) Sample P-NA-off with 15s etching.
Fig. 4.
Fig. 4. ECCI micrographs for (a) A-NA-off and (b) A-5TC-off.
Fig. 5.
Fig. 5. Ge molar fraction and dopants (As/P) concentration profiles measured by SIMS. The Ge profiles are shifted laterally for easy comparison. The dopant profiles are also shifted laterally by the same length as their corresponding Ge profiles. Profiles in (a) n-Ge/Si without annealing; (b) in selected n-Ge/offcut-Si after annealing; (c) in n-Ge/Si without annealing showing the immunity to dopant outdiffusion near the sample surfaces; (d) in selected n-Ge/offcut-Si after annealing showing the immunity to dopant outdiffusion near the sample surfaces. In (c) and (d), the initial surface SIMS peaks exist, which are common for SIMS analysis due to the stabilization of the sputtering beams. The SIMS data in the first 10 nm are not true concentration data.
Fig. 6.
Fig. 6. (a) Room-temperature (22.5 °C on the temperature-controlled stage) PL spectra comparison for the unannealed P and As-doped samples (grown by MOCVD) and the reference n+ Ge control sample from MIT (UHVCVD, phosphorous delta-doped). The direct and indirect transitions are indicated in the figure. The small spikes at 1800-1900 nm are induced by water vapor absorption. (b) and (c) show the PL Intensity comparison between annealed and unannealed MOCVD samples with P and As doping respectively. (d) Peak PL intensity vs. TDD values measured by ECCI for unannealed and annealed samples. The error bars for the TDD are based on Table 2, while those for the PL intensity reflect the statistical variations across different regions on the same sample. (e) PL peak fitting of the P-NA-On sample using equation (1). The direct and indirect gaps, as well as the quasi-Fermi level of electrons, are indicated in the figure. (f) Direct gap PL intensity vs. injected carrier density in the direct Γ valley, showing a linear relation for the MOCVD samples. The injected carrier density and direct gap PL intensity of the P-NA-Off sample are similar to those of the MIT sample, although the doping level is lower by a factor of 5. This result indicates a higher injection efficiency in the MOCVD sample due to better material quality.

Tables (4)

Tables Icon

Table 1. Samples without defect annealing were noted as “NA” in the names. “5TC” means with five thermal cyclings for defect annealing; “off” means on 6° off-cut (100) Si, and “on” means on on-axis (100) Si.

Tables Icon

Table 2. Wafer offcut information and the average and RMS surface roughness of the samples

Tables Icon

Table 3. Comparison between EPD and ECCI results.

Tables Icon

Table 4. Energy difference between the direct and indirect bandgap for the different samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I P L ( h v ) = A d i r h v E g Γ 1 + exp ( h v E f n k B T ) + B i n d h v E g L 1 + exp ( h v E f n k B T ) + C b a c k g r o u n d