Abstract

The authors demonstrate dual frequency switching in a cubic blue phase liquid crystal. The dual frequency blue phase was prepared by adding a strongly twisting chiral dopant to a dual-frequency nematic liquid crystal mixture. The crossover frequency appeared at few hundred kHz in the blue phase, and sub-millisecond response was obtained for dual-frequency operation, which was comparable to conventional voltage operation. This new class of material is advantageous over conventional blue phases in polarization-independent phase modulation devices, since a larger lattice deformation can be obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
    [CrossRef]
  2. H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond.128, 99–117 (2008).
    [CrossRef]
  3. H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE7232, 723205 (2009).
    [CrossRef]
  4. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express19, 8045–8050 (2011).
    [CrossRef] [PubMed]
  5. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
    [CrossRef]
  6. S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-18-3578 .
    [CrossRef] [PubMed]
  7. H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
    [CrossRef]
  8. H. K. Bücher, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett.25, 186–188 (1974).
    [CrossRef]
  9. M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst.89, 77–92 (1982).
    [CrossRef]
  10. Y. Shinozaki, S. Kanbe, and K. Takei, “(2′-Cyano-4′-n-alkyl)phenyl-3-chloro-4-n-alkoxy benzoates and liquid crystal compositions thereof,” Kabushiki Kaisha Suwa Seikosha, U.S. patent 4,279,771 (1981).
  11. C-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86, 231104 (2005).
    [CrossRef]
  12. M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
    [CrossRef]
  13. P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
    [CrossRef]
  14. L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
    [CrossRef]
  15. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
    [CrossRef]

2011

2010

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

2009

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
[CrossRef]

H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE7232, 723205 (2009).
[CrossRef]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

2008

H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

2005

C-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86, 231104 (2005).
[CrossRef]

2002

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

1989

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

1985

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

1982

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst.89, 77–92 (1982).
[CrossRef]

1974

H. K. Bücher, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett.25, 186–188 (1974).
[CrossRef]

Bücher, H. K.

H. K. Bücher, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett.25, 186–188 (1974).
[CrossRef]

Fujii, A.

Gerber, P. R.

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

Haseba, Y.

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Kanbe, S.

Y. Shinozaki, S. Kanbe, and K. Takei, “(2′-Cyano-4′-n-alkyl)phenyl-3-chloro-4-n-alkoxy benzoates and liquid crystal compositions thereof,” Kabushiki Kaisha Suwa Seikosha, U.S. patent 4,279,771 (1981).

Kang, B. G.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kang, S.-W.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kawamoto, K.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Kikuchi, H.

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-18-3578 .
[CrossRef] [PubMed]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Kim, M.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kim, M. S.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kim, M.-K.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kitzerow, H.-S.

H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE7232, 723205 (2009).
[CrossRef]

Kubo, H.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Kumar, P.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Kuwabata, S.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Lee, M.-H.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Lee, S. H.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Li, Y.

Lin, C.-L.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
[CrossRef]

Mermin, N. D.

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Ozaki, M.

Rao, L.

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

Schadt, M.

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst.89, 77–92 (1982).
[CrossRef]

Shinozaki, Y.

Y. Shinozaki, S. Kanbe, and K. Takei, “(2′-Cyano-4′-n-alkyl)phenyl-3-chloro-4-n-alkoxy benzoates and liquid crystal compositions thereof,” Kabushiki Kaisha Suwa Seikosha, U.S. patent 4,279,771 (1981).

Tagashira, K.

Takei, K.

Y. Shinozaki, S. Kanbe, and K. Takei, “(2′-Cyano-4′-n-alkyl)phenyl-3-chloro-4-n-alkoxy benzoates and liquid crystal compositions thereof,” Kabushiki Kaisha Suwa Seikosha, U.S. patent 4,279,771 (1981).

Tanaka, Y.

Tsuda, T.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Wen, C-H.

C-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86, 231104 (2005).
[CrossRef]

Wright, D. C.

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Wu, S. T.

Wu, S.-T.

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
[CrossRef]

C-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86, 231104 (2005).
[CrossRef]

Xianyu, H.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
[CrossRef]

Yabu, S.

Yamamoto, S.-ichi

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

Yan, J.

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Yoshida, H.

Appl. Phys. Express

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Appl. Phys. Lett.

H. K. Bücher, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett.25, 186–188 (1974).
[CrossRef]

C-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86, 231104 (2005).
[CrossRef]

L. Rao, J. Yan, S.-T. Wu, S.-ichi Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett.98, 081109 (2011).
[CrossRef]

Curr. Appl. Phys.

M. Kim, B. G. Kang, M. S. Kim, M.-K. Kim, P. Kumar, M.-H. Lee, S.-W. Kang, and S. H. Lee, “Measurement of local retardation in optically isotropic liquid crystal devices driven by in-plane electric field,” Curr. Appl. Phys.10, e118–e121 (2010).
[CrossRef]

Liq. Cryst.

H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36, 717–726 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst.

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

M. Schadt, “Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects,” Mol. Cryst. Liq. Cryst.89, 77–92 (1982).
[CrossRef]

Nat. Mater.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1, 64–68 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H.-S. Kitzerow, “Blue phases come of age: a review,” Proc. SPIE7232, 723205 (2009).
[CrossRef]

Rev. Mod. Phys.

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Struct. Bond.

H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

Other

Y. Shinozaki, S. Kanbe, and K. Takei, “(2′-Cyano-4′-n-alkyl)phenyl-3-chloro-4-n-alkoxy benzoates and liquid crystal compositions thereof,” Kabushiki Kaisha Suwa Seikosha, U.S. patent 4,279,771 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Deformation of the refractive index ellipsoid of BPLCs by an electric field.

Fig. 2
Fig. 2

Operation principle of DFBPs drived by frequency switching.

Fig. 3
Fig. 3

Frequency dependent dielectric anisotropy of the host nematic liquid crystal mixture at various temperatures.

Fig. 4
Fig. 4

Change in BP-cholesteric transition temperature caused by application of high frequency fields.

Fig. 5
Fig. 5

(a) Frequency dependency of the transmittance of the cholesteric texture. (b) Temperature dependence of the crossover frequency.

Fig. 6
Fig. 6

(a) Transmittance of BP with tint plate, and (b) POM image with applied voltage of 1kHz (c) 500 kHz.

Fig. 7
Fig. 7

(a) Frequency dependence of the Kerr Constant of the sample at various temperatures (b) Temperature dependence of the crossover frequency in BP.

Fig. 8
Fig. 8

Temporal response curve of DFBP for (a) frequency switching and (b) voltage switching.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f c exp ( E k B T )
I = 1 2 sin 2 π Δ n d λ
I = I 0 + A 1 exp { t t 0 τ 1 } + A 2 exp { t t 0 τ 2 }

Metrics