Abstract

The orientational assembly of glass rods (3 x ~15 µm) in nematic, twisted nematic, and cholesteric liquid crystal cells was observed and quantified with optical microscopy. At this size, the rods were affected strongly by gravity and sedimented to the bottom of the cells. Temporal visualization of the sedimentation process (induced by flipping the cell over) shed insight into the effect the liquid crystal order had on the glass rod orientation. For nematic and twisted nematic geometries, the glass rods were aligned parallel to the local director orientation. Control experiments indicate that the rod alignment is not due to capillary flow induced artifacts from fabrication of the sample or due to interactions with the buffed substrates. As evidence, the glass rods rotated 90 degrees as they fell from the top to the bottom of a twisted nematic cell. More complex behavior was observed for cholesteric cells depending on the pitch length. A computational model was developed to predict the elastic energy of the system as a function of the angle between the long axis of the glass rod and the cholesteric liquid crystal director. The model predicted that the elastic energy of the system was minimized when the glass rods remained parallel to the cholesteric liquid crystal director when the pitch was sufficiently long, which agrees with experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
    [CrossRef]
  2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid crystal solvents,” Chem. Mater.16(5), 762–767 (2004).
    [CrossRef]
  3. J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
    [CrossRef] [PubMed]
  4. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
    [CrossRef] [PubMed]
  5. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
    [CrossRef]
  6. W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Science + Business Media, 2010).
  7. L. Cseh and G. H. Mehl, “The design and investigation of room temperature thermotropic nematic gold nanoparticles,” J. Am. Chem. Soc.128(41), 13376–13377 (2006).
    [CrossRef] [PubMed]
  8. L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
    [CrossRef]
  9. G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
    [CrossRef]
  10. K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
    [CrossRef]
  11. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
    [CrossRef] [PubMed]
  12. H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
    [CrossRef]
  13. T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
    [CrossRef]
  14. C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
    [CrossRef] [PubMed]
  15. C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
    [CrossRef]
  16. C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
    [CrossRef] [PubMed]
  17. R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
    [CrossRef] [PubMed]
  18. R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999).
  19. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

2010

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

2008

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
[CrossRef] [PubMed]

2007

T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

2006

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

L. Cseh and G. H. Mehl, “The design and investigation of room temperature thermotropic nematic gold nanoparticles,” J. Am. Chem. Soc.128(41), 13376–13377 (2006).
[CrossRef] [PubMed]

2005

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

2004

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid crystal solvents,” Chem. Mater.16(5), 762–767 (2004).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

2002

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

2000

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Alexandridis, P.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Alivisatos, P.

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Baker, R. T.

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Bastiaansen, C. W. M.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Brackley, A. J.

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Broer, D. J.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Cappallo, N.

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

Chao, C.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chen, C.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chen, H.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Chen, Y.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Cheng, S.

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

Chou, P.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chu, F.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Chu, K.

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Cseh, L.

L. Cseh and G. H. Mehl, “The design and investigation of room temperature thermotropic nematic gold nanoparticles,” J. Am. Chem. Soc.128(41), 13376–13377 (2006).
[CrossRef] [PubMed]

Cui, Y.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Dickson, W.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Eelkema, R.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Evans, P. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Felton, E. J.

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Feringa, B. L.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Foland, K.

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Gardner, D.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

He, S.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Hegmann, T.

T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
[CrossRef]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Hultgren, A.

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Kang, C.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Karanikolos, G. N.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Katsonis, N.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Lai, C.

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Lapointe, C.

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Lapointe, C. P.

C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
[CrossRef] [PubMed]

Law, N.-L.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Lee, W.

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

Leheny, R. L.

C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
[CrossRef] [PubMed]

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Li, L.

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

Li, X.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Lin, T.

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

Liu, Q.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Lynch, M. D.

M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid crystal solvents,” Chem. Mater.16(5), 762–767 (2004).
[CrossRef]

Mallory, R.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Manna, L.

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

Marx, V. M.

T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
[CrossRef]

Mehl, G. H.

L. Cseh and G. H. Mehl, “The design and investigation of room temperature thermotropic nematic gold nanoparticles,” J. Am. Chem. Soc.128(41), 13376–13377 (2006).
[CrossRef] [PubMed]

Mougous, J. D.

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Mountziaris, T. J.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Patrick, D. L.

M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid crystal solvents,” Chem. Mater.16(5), 762–767 (2004).
[CrossRef]

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Petrou, A.

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Pollard, M. M.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Qi, H.

T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
[CrossRef]

Ramon, B. S.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Reich, D. H.

C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
[CrossRef] [PubMed]

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Silevitch, D. M.

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Smalyukh, I. I.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Vicario, J.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Walda, J.

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

Wang, C.

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Wu, K.

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Wurtz, G. A.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Zayats, A. V.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Appl. Phys. Lett.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

T. Lin, C. Chen, W. Lee, S. Cheng, and Y. Chen, “Electrical manipulation of magnetic anisotropy in the composite of liquid crystals and ferromagnetic nanorods,” Appl. Phys. Lett.93(1), 013108 (2008).
[CrossRef]

Chem. Mater.

M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid crystal solvents,” Chem. Mater.16(5), 762–767 (2004).
[CrossRef]

J. Am. Chem. Soc.

L. Cseh and G. H. Mehl, “The design and investigation of room temperature thermotropic nematic gold nanoparticles,” J. Am. Chem. Soc.128(41), 13376–13377 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

C. Lapointe, N. Cappallo, D. H. Reich, and R. L. Leheny, “Static and dynamic properties of magnetic nanowires in nematic fluids,” J. Appl. Phys.97(10), 10Q304 (2005).
[CrossRef]

J. Inorg. Organomet. Polym. Mater.

T. Hegmann, H. Qi, and V. M. Marx, “Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications,” J. Inorg. Organomet. Polym. Mater.17(3), 483–508 (2007).
[CrossRef]

J. Phys. Chem. C

H. Chen, C. Chen, C. Wang, F. Chu, C. Chao, C. Kang, P. Chou, and Y. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Langmuir

C. P. Lapointe, D. H. Reich, and R. L. Leheny, “Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals,” Langmuir24(19), 11175–11181 (2008).
[CrossRef] [PubMed]

Nano Lett.

L. Li, J. Walda, L. Manna, and P. Alivisatos, “Semiconductor nanorod liquid crystals,” Nano Lett.2(6), 557–560 (2002).
[CrossRef]

K. Wu, K. Chu, C. Chao, Y. Chen, C. Lai, C. Kang, C. Chen, and P. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett.10(4), 1347–1353 (2010).
[CrossRef] [PubMed]

Nanotechnology

G. N. Karanikolos, N.-L. Law, R. Mallory, A. Petrou, P. Alexandridis, and T. J. Mountziaris, “Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates,” Nanotechnology17(13), 3121–3128 (2006).
[CrossRef]

Nature

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Molecular machines: nanomotor rotates microscale objects,” Nature440(7081), 163 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. D. Mougous, A. J. Brackley, K. Foland, R. T. Baker, and D. L. Patrick, “Formation of uniaxial molecular films by liquid-crystal imprinting in a magnetic field,” Phys. Rev. Lett.84(12), 2742–2745 (2000).
[CrossRef] [PubMed]

Science

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

C. Lapointe, A. Hultgren, D. M. Silevitch, E. J. Felton, D. H. Reich, and R. L. Leheny, “Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science303(5658), 652–655 (2004).
[CrossRef] [PubMed]

Other

R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999).

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994).

W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Science + Business Media, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of a glass rod in a CLC cell.

Fig. 2
Fig. 2

Polarizing optical micrograph of a (a) glass rod with long axis parallel to the rubbing direction of the sample cell (b) glass rod with long axis 34 degrees from the rubbing direction of the sample cell. In each micrograph the polarizer was parallel to the rubbing direction while the analyzer was perpendicular to it. Note: the exposure time for photograph (a) is longer than that of (b).

Fig. 3
Fig. 3

(a) Optical micrograph of glass rods in nematic liquid crystal E7. Arrow denotes rubbing direction. (b) Histogram quantifying the angular orientations of the glass rods in (a) using ImageJ.

Fig. 4
Fig. 4

Optical micrograph of glass rods dispersed in water in an anti-parallel rubbed cell.

Fig. 5
Fig. 5

(a) Optical micrograph of glass rods in a circularly rubbed nematic liquid crystal E7. (b) Histogram quantifying the angular orientations of the glass rods in (a) using ImageJ.

Fig. 6
Fig. 6

A series of optical micrographs depicting the orientation of glass rods in a twisted nematic cell as a function of time after it has been flipped over. The scale bar is 50 microns. Arrows denote the rubbing direction of the bottom substrate. Each rod reorients a total of 90 degrees.

Fig. 7
Fig. 7

(a) Optical micrographs of static 3 µm diameter glass rods in 30.7, 16.6, 10, 2 µm pitch cholesteric liquid crystals (CB15/E7). The black arrow denotes the rubbing direction. The scale bars are 50 microns. (b) Histogram quantifying the angular orientations of the glass rods in (a).

Fig. 8
Fig. 8

The number of degrees a 3 µm x 22 µm glass rod rotates in a 30.7, 16.6, 10, 2, and 0.331 µm pitch CLC (CB15/E7) versus time after the cell has been turned over (bottom of the cell becomes the top and the rods are subject to gravity).

Fig. 9
Fig. 9

A series of optical micrographs depicting the orientation of a 3 x 22 µm glass rod in a 10 µm pitch CLC cell as a function of time after it has been flipped over.

Fig. 10
Fig. 10

A laser scanning confocal micrograph of 2 glass rods trapped in defects lines within a 2 µm pitch CLC cell.

Fig. 11
Fig. 11

Computed LC director configuration in the minimum elastic energy state when the angle between the glass rod and the LC director at the middle plane is 0°. The CLC pitch is 10 µm.

Fig. 12
Fig. 12

Computed elastic energy (subtracted by the elastic energy at 0 degree, in units of K22) per unit length of glass rod as a function of angle between the long axis of the glass rod and the CLC director for CLC pitches of ∞, 20, 10, 6 and 3 µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a 4 Δρg> k B T
f= 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n × n +2π/P) 2 + 1 2 K 33 ( n ×× n ) 2
F= h/2 h/2 L/2 L/2 f(x,z)dxdz
Q (x,y,z)= n n 1 3 I
f= 1 12 ( K 11 +3 K 22 + K 33 ) G 1 + 1 2 ( K 11 K 22 ) G 2 + 1 4 ( K 11 + K 33 ) G 6 (2π/P) K 22 G 4 + 1 12 ( K 11 +3 K 22 + K 33 )( n n + n ×× n )]

Metrics