Abstract

The work demonstrates a polarizer-free bistable reflective electro-optical switch that is based on dichroic dye-doped cholesteric liquid crystal (DDCLC). Bistable opaque and transparent states can be achieved using the planar and ULH textures of CLC, respectively. In the planar texture, the liquid crystal and dye molecules have a periodic helical structure with axes perpendicular to the substrate surface. They therefore absorb arbitrarily polarized light. In the ULH texture, the liquid crystal and dye molecules twist along the helical axes parallel to the substrate, and allow most of the arbitrarily polarized light to pass. Both the planar and ULH textures of CLC are stable states, and each can be switched to the other by applying a low-frequency (30Hz) electrical field, owing to the electro-hydrodynamic effect. A bistable electro-optical switch has the advantages of being polarizer-free and consuming low power. It can therefore potentially be used in portable information systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (John Wiley, 2006).
  2. H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
    [CrossRef]
  3. Y.-H. Lin and C.-M. Yang, “A polarizer-free three step switch using distinct dye-doped liquid crystal gels,” Appl. Phys. Lett.94(14), 143504 (2009).
    [CrossRef]
  4. W.-Y. Teng, S.-C. Jeng, C.-W. Kuo, Y.-R. Lin, C.-C. Liao, and W.-K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008).
    [CrossRef] [PubMed]
  5. G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett.13(3), 91–92 (1968).
    [CrossRef]
  6. D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
    [CrossRef]
  7. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
    [CrossRef]
  8. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J.-C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010).
    [CrossRef] [PubMed]
  9. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express11(6), 560–565 (2003).
    [CrossRef] [PubMed]
  10. D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37(1), 109–111 (1980).
    [CrossRef]
  11. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  12. C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
    [CrossRef]
  13. E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
    [CrossRef]
  14. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).
  15. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
    [CrossRef] [PubMed]
  16. S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
    [CrossRef]

2011 (2)

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
[CrossRef]

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

2010 (1)

2009 (3)

Y.-H. Lin and C.-M. Yang, “A polarizer-free three step switch using distinct dye-doped liquid crystal gels,” Appl. Phys. Lett.94(14), 143504 (2009).
[CrossRef]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
[CrossRef] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

2008 (1)

2007 (1)

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

2003 (1)

1994 (2)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

1980 (1)

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37(1), 109–111 (1980).
[CrossRef]

1974 (1)

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

1968 (1)

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett.13(3), 91–92 (1968).
[CrossRef]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37(1), 109–111 (1980).
[CrossRef]

Castles, F.

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
[CrossRef] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

Chang Kim, J.

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Chin, W.-K.

Choi, S. S.

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

Coles, H. J.

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
[CrossRef] [PubMed]

Dalchiele, E. A.

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Ferrari, J. A.

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

Frins, E. M.

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

Fu, K.-Y.

Glasser, J.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37(1), 109–111 (1980).
[CrossRef]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett.13(3), 91–92 (1968).
[CrossRef]

Huang, C.-Y.

Jeng, S.-C.

Jin, H.

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

Jin, H.-J.

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J.-C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010).
[CrossRef] [PubMed]

Kim, J.-C.

Kim, K.-H.

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J.-C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010).
[CrossRef] [PubMed]

Kuo, C.-W.

Lee, J.-H.

Liao, C.-C.

Lin, T.-H.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin and C.-M. Yang, “A polarizer-free three step switch using distinct dye-doped liquid crystal gels,” Appl. Phys. Lett.94(14), 143504 (2009).
[CrossRef]

Lin, Y.-R.

Lo, K.-Y.

Morris, S. M.

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
[CrossRef] [PubMed]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

Park, K.-H.

Perciante, C. D.

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

Scherschener, E.

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

Taylor, G. N.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

Teng, W.-Y.

Tsai, M.-S.

Wang, C.-T.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
[CrossRef]

Wang, W.-Y.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
[CrossRef]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

White, D. L.

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

Yang, C.-M.

Y.-H. Lin and C.-M. Yang, “A polarizer-free three step switch using distinct dye-doped liquid crystal gels,” Appl. Phys. Lett.94(14), 143504 (2009).
[CrossRef]

Yang, D.-K.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Yaniv, Z.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Yoon, T.-H.

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J.-C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express18(16), 16745–16750 (2010).
[CrossRef] [PubMed]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett.13(3), 91–92 (1968).
[CrossRef]

Appl. Phys. Lett. (6)

Y.-H. Lin and C.-M. Yang, “A polarizer-free three step switch using distinct dye-doped liquid crystal gels,” Appl. Phys. Lett.94(14), 143504 (2009).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest-host interactions in nematic liquid crystals,” Appl. Phys. Lett.13(3), 91–92 (1968).
[CrossRef]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D. W. Berreman and W. R. Heffner, “New bistable cholesteric liquid-crystal display,” Appl. Phys. Lett.37(1), 109–111 (1980).
[CrossRef]

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett.99(4), 041108 (2011).
[CrossRef]

S. S. Choi, F. Castles, S. M. Morris, and H. J. Coles, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett.95(19), 193502 (2009).
[CrossRef]

J. Appl. Phys. (3)

E. Scherschener, E. A. Dalchiele, E. M. Frins, C. D. Perciante, and J. A. Ferrari, “Contrast enhancement in double-layered dye-doped polymer-dispersed liquid-crystal cells,” J. Appl. Phys.102(1), 014502 (2007).
[CrossRef]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys.45(11), 4718–4723 (1974).
[CrossRef]

J. Inf. Disp. (1)

H.-J. Jin, K.-H. Kim, H. Jin, J. Chang Kim, and T.-H. Yoon, “Dye-doped liquid crystal device switchable between reflective and transmissive modes,” J. Inf. Disp.12(1), 17–21 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(3), 031709 (2009).
[CrossRef] [PubMed]

Other (2)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (John Wiley, 2006).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic structure of DDCLC film in planar, focal conic, and ULH states. (b) Transmission spectra of four states of CLC planar, focal conic, ULH, and homeotropic.

Fig. 2
Fig. 2

Textures in three stable states: (a) planar state, (b) focal conic state, [(c) and (d)] ULH state with optical axis at 45° and 0° with respect to polarizer.

Fig. 3
Fig. 3

(a) Structures and operating mechanisms of the DDCLC bistable electro-optical switch. (b) Reflection spectra of bistable DDCLC in planar and ULH states.

Fig. 4
Fig. 4

Reflection viewing diagrams of bistable DDCLC in (a) planar state and (b) ULH state.

Fig. 5
Fig. 5

(a) Photographs of the DDCLC bistable electro-optical switch. (b) Contrast ratio of device as a function of wavelength.

Metrics