Abstract

We present spectroscopic investigations and the first laser operation of Ho:Lu2O3. Laser operation was obtained with two different setups at room temperature: In a 1.9 μm diode pumped setup a maximum output power of 15 W was achieved. With a Tm-fiber laser pumped setup the maximum output power was 5.2 W and the slope efficiency was 54% with respect to the absorbed pump power. Absorption measurements revealed absorption cross sections of up to 11.7 · 10−21 cm2 at 1928 nm. In the 2.1 μm range a maximum emission cross section of 4.5 · 10−21 cm2 at 2124 nm was determined, which remains the highest gain peak even for high inversions. The fluorescence lifetime of the 5I7-manifold was found to be 10 ms.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.
  2. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45, 3839–3845 (2006).
    [CrossRef] [PubMed]
  3. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
    [CrossRef]
  4. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996).
    [CrossRef]
  5. D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
    [CrossRef]
  6. X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.
  7. C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
    [CrossRef]
  8. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
    [CrossRef]
  9. R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
    [CrossRef]
  10. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
    [CrossRef] [PubMed]
  11. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
    [CrossRef] [PubMed]
  12. L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
    [CrossRef]
  13. J. Mohr, M. Mond, V. Peters, E. Heumann, K. Petermann, and G. Huber, “Spectroscopy and continous wave lasing of Yb,Ho:Sc2O3 and Tm,Ho:Sc2O3 at 2.1 mm,” DPG-Frühjahrstagung 2001, Q 33.4, available at http://old.dpg-tagungen.de/archive/2001/html/q_33.html (2001).
  14. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011).
    [CrossRef] [PubMed]
  15. M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
    [CrossRef]
  16. F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970).
    [CrossRef]
  17. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
    [CrossRef]
  18. M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.
  19. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136, A954–A957 (1964).
    [CrossRef]
  20. V. Peters, “Growth and spectroscopy of Ytterbium-doped sesquioxides,” PhD thesis (University of Hamburg, Shaker, 2001).
  21. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
    [CrossRef]

2011 (3)

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

2008 (1)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

2006 (1)

2004 (1)

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

2000 (1)

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

1996 (1)

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996).
[CrossRef]

1995 (1)

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

1970 (1)

F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136, A954–A957 (1964).
[CrossRef]

Abdolvand, A.

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

Aguilo, M.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Arisholm, G.

Baer, C.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Baer, C. R. E.

Beil, K.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

Carvajal, J. J.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

Choi, H.K.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Clarkson, W.A.

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

Cooper, L.J.

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

Diaz, F.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Dubinskii, M.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

Fan, T.Y.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Fechner, M.

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

Fredrich-Thornton, S.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Fuhrberg, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.

Galceran, M.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Gluchowski, P.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Golling, M.

Heckl, O.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Heckl, O. H.

Huber, G.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Ikesue, A.

Keller, U.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

Koopmann, P.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Kränkel, C.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

Lamrini, S.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.

Lee, H.-C.

X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.

Lippert, E.

Mateos, X.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136, A954–A957 (1964).
[CrossRef]

Meissner, H.E.

X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.

Merkle, L. D.

Michael, A.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

Mu, X.

X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.

Nabors, C.D.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Newburgh, G. A.

Nicolas, S.

Ochoa, J.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

Petermann, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Peters, R.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

Peters, V.

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

V. Peters, “Growth and spectroscopy of Ytterbium-doped sesquioxides,” PhD thesis (University of Hamburg, Shaker, 2001).

Pujol, M. C.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Reichert, F.

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Rustad, G.

E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45, 3839–3845 (2006).
[CrossRef] [PubMed]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996).
[CrossRef]

Sanchez, A.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Saraceno, C.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Saraceno, C. J.

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

Schmid, F.

F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970).
[CrossRef]

Scholle, K.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.

Shen, D.Y.

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

Stenersen, K.

E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt.45, 3839–3845 (2006).
[CrossRef] [PubMed]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996).
[CrossRef]

Strek, W.

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

Südmeyer, T.

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35, 2302–2304 (2010).
[CrossRef] [PubMed]

Turner, G.W.

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

Viehnicki, D.

F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970).
[CrossRef]

Word-Daniels, A.

Appl. Opt. (1)

Appl. Phys. B (2)

D.Y. Shen, A. Abdolvand, L.J. Cooper, and W.A. Clarkson, “Efficient Ho : YAG laser pumped by a cladding pumped tunable Tm : silica-fibre laser,” Appl. Phys. B79, 559–561 (2004).
[CrossRef]

R. Peters, C. Kränkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Südmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Ceram. Int. (1)

L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, “Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3,” Ceram. Int.26, 589–592 (2000).
[CrossRef]

IEEE J. Quantum Electron. (4)

C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, and G.W. Turner, “Ho : YAG laser pumped by 1.9-μm diode lasers,” IEEE J. Quantum Electron.31, 1603–1605 (1995).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron.23, 924–933 (1988).
[CrossRef]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32, 1645–1656 (1996).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28, 2619–2630 (1992).
[CrossRef]

J. Am. Ceram. Soc. (2)

M. Galceran, M. C. Pujol, P. Gluchowski, W. Strek, J. J. Carvajal, X. Mateos, M. Aguilo, and F. Diaz, “A promising Lu2–xHoxO3 laser nanoceramic: synthesis and characterization,” J. Am. Ceram. Soc.93, 3764–3772 (2010).
[CrossRef]

F. Schmid and D. Viehnicki, “Growth of sapphire disks from the melt by a gradient furnace technique,” J. Am. Ceram. Soc.53, 528–529 (1970).
[CrossRef]

J. Cryst. Growth (1)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth310, 1934–1938 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136, A954–A957 (1964).
[CrossRef]

Other (6)

V. Peters, “Growth and spectroscopy of Ytterbium-doped sesquioxides,” PhD thesis (University of Hamburg, Shaker, 2001).

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B (2011). DOI:
[CrossRef]

X. Mu, H.E. Meissner, and H.-C. Lee, “Thulium fiber laser 4-pass end-pumped high efficiency 2.09-μm Ho:YAG Laser,” in “Proceedings of CLEO/QUELS 2009,” (2009), CWH1.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm Laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, Vukovar, Croatia, 2010), pp. 471–500.

J. Mohr, M. Mond, V. Peters, E. Heumann, K. Petermann, and G. Huber, “Spectroscopy and continous wave lasing of Yb,Ho:Sc2O3 and Tm,Ho:Sc2O3 at 2.1 mm,” DPG-Frühjahrstagung 2001, Q 33.4, available at http://old.dpg-tagungen.de/archive/2001/html/q_33.html (2001).

M. Fechner, F. Reichert, P. Koopmann, K. Petermann, and G. Huber, “Spectroscopy of Ho:Lu2O3 with respect to the realization of a visible laser,” in Proceedings of CLEO Europe EQEC 2011 (2011), CA8.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Room temperature absorption (a) and emission (b) cross section spectra of Ho:Lu2O3 around 2 μm. The inset in (a) shows the region from 1920 nm to 1945 nm, where the maximum absorption cross sections are located.

Fig. 2
Fig. 2

Gain spectrum of Ho:Lu2O3 for different inversion levels β. For inversion levels around 13% maximum gain can be found around 2134 nm, for high inversion levels the gain peak is located at 2124 nm.

Fig. 3
Fig. 3

Absorption spectrum of Ho:Lu2O3 (red, thick) and emission spectra of the laser diode for different pump powers.

Fig. 4
Fig. 4

Resonator setup for the diode pumped laser experiments. The water cooled pinhole prevents the mirror mount from heating up strongly.

Fig. 5
Fig. 5

Measured (blue circles) and calculated (black squares) transmission of the Ho:Lu2O3 rod.

Fig. 6
Fig. 6

Input output curves of the diode pumped Ho:Lu2O3 laser.

Fig. 7
Fig. 7

Spectra of the Ho:Lu2O3 laser for output coupling transmissions of 1% and 7%.

Fig. 8
Fig. 8

Setup of the fiber based master oscillator power amplifier system.

Fig. 9
Fig. 9

Resonator setup for the fiber laser pumped laser experiments.

Fig. 10
Fig. 10

Input output curves of the fiber laser pumped Ho:Lu2O3 laser for different output coupling transmissions.

Metrics