Abstract

A digital holography interferometry was applied for in situ observation of the light-assisted domain reversal in the lithium niobate doped with MgO. The evolution of the light-assisted domain nucleation and growth was reconstructed, and we found a flat-top reversed domain state during the two stages: I. the reversed domain tip propagates in depth and progressively flattens its edge profile; II. the polarization reversal front abruptly changes shape with the formation of two fast-propagating lateral tips. According to experiments and analysis, we find a Gaussian-shaped space charge field and present a model based on a redistribution of the photo-excited carriers to explain the process of light-assisted domain reversal.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  2. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
    [CrossRef]
  3. N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
    [CrossRef] [PubMed]
  4. M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
    [CrossRef]
  5. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
    [CrossRef]
  6. H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
    [CrossRef]
  7. Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
    [CrossRef]
  8. Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
    [CrossRef] [PubMed]
  9. C. Y. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas, and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express18(11), 11508–11513 (2010).
    [CrossRef] [PubMed]
  10. C. L. Sones, P. Ganguly, Y. J. Ying, F. Johann, E. Soergel, R. W. Eason, and S. Mailis, “Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals,” Opt. Express17(26), 23755–23764 (2009).
    [CrossRef] [PubMed]
  11. M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
    [CrossRef]
  12. H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
    [CrossRef]
  13. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Opt. Express12(9), 1832–1842 (2004).
    [CrossRef] [PubMed]
  14. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in lithium niobate crystals directly observed by digital holography,” Opt. Express13(14), 5416–5423 (2005).
    [CrossRef] [PubMed]
  15. M. Paturzo, F. Merola, and P. Ferraro, “Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography,” Opt. Lett.35(7), 1010–1012 (2010).
    [CrossRef] [PubMed]
  16. V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci.41(1), 199–210 (2006).
    [CrossRef]
  17. V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
    [CrossRef]
  18. R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev.117(6), 1460–1466 (1960).
    [CrossRef]
  19. C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C2(1), 136–140 (2005).
    [CrossRef]
  20. W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
    [CrossRef]

2010 (3)

2009 (4)

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
[CrossRef]

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

C. L. Sones, P. Ganguly, Y. J. Ying, F. Johann, E. Soergel, R. W. Eason, and S. Mailis, “Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals,” Opt. Express17(26), 23755–23764 (2009).
[CrossRef] [PubMed]

2007 (1)

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

2006 (1)

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci.41(1), 199–210 (2006).
[CrossRef]

2005 (4)

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C2(1), 136–140 (2005).
[CrossRef]

M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in lithium niobate crystals directly observed by digital holography,” Opt. Express13(14), 5416–5423 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
[CrossRef]

2000 (2)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1960 (1)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev.117(6), 1460–1466 (1960).
[CrossRef]

Alfieri, D.

Broderick, N. G.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Buse, K.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Caccavale, F.

Callejo, D.

Chen, S. L.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Cube, F.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

de Angelis, M.

De Natale, P.

De Nicola, S.

Dierolf, V.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C2(1), 136–140 (2005).
[CrossRef]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Eason, R. W.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Ferraro, P.

Finizio, A.

Fujimura, M.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
[CrossRef]

Ganguly, P.

Grilli, S.

Hanna, D. C.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Heinemeyer, U.

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
[CrossRef]

Hu, Q.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Johann, F.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kong, Y. F.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Liu, D.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Liu, H. D.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Liu, L.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Liu, S. G.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Luan, Z.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Luedtke, F.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Mailis, S.

Merola, F.

Miller, R. C.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev.117(6), 1460–1466 (1960).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Morbiato, A.

Offerhaus, H. L.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Paturzo, M.

Peacock, A. C.

Pierattini, G.

Qu, W.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Richardson, D. J.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Sandmann, C.

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C2(1), 136–140 (2005).
[CrossRef]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Shur, V. Y.

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci.41(1), 199–210 (2006).
[CrossRef]

Soergel, E.

Sohmura, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
[CrossRef]

Sones, C. L.

Steigerwald, H.

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
[CrossRef]

Suhara, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
[CrossRef]

Valdivia, C. E.

Y. J. Ying, C. E. Valdivia, C. L. Sones, R. W. Eason, and S. Mailis, “Latent light-assisted poling of LiNbO3.,” Opt. Express17(21), 18681–18692 (2009).
[CrossRef] [PubMed]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Wang, W. J.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Weinreich, G.

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev.117(6), 1460–1466 (1960).
[CrossRef]

Wengler, M. C.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Xu, J. J.

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

Ying, C. Y.

Ying, Y. J.

Zervas, M. N.

Zhi, Y.

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Appl. Phys. B (1)

H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B101(3), 535–539 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett.84(20), 3987–3989 (2004).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order of magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett.86(21), 212901 (2005).
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett.94(3), 032906 (2009).
[CrossRef]

Y. Zhi, D. Liu, W. Qu, Z. Luan, and L. Liu, “Wavelength dependence of light-induced domain nucleation in MgO-doped congruent LiNbO3 crystal,” Appl. Phys. Lett.90(4), 042904 (2007).
[CrossRef]

Electron. Lett. (1)

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett.39(9), 719–721 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (2)

M. C. Wengler, U. Heinemeyer, E. Soergel, and K. Buse, “Ultraviolet light-assisted domain inversion in magnesium doped lithium niobate crystals,” J. Appl. Phys.98(6), 064104 (2005).
[CrossRef]

W. J. Wang, Y. F. Kong, H. D. Liu, Q. Hu, S. G. Liu, S. L. Chen, and J. J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys.105(4), 043105 (2009).
[CrossRef]

J. Mater. Sci. (1)

V. Y. Shur, “Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3,” J. Mater. Sci.41(1), 199–210 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Phys. Rev.117(6), 1460–1466 (1960).
[CrossRef]

Phys. Rev. Lett. (1)

N. G. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

C. Sandmann and V. Dierolf, “The role of defects in light induced domain inversion in lithium niobate,” Phys. Status Solidi C2(1), 136–140 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The selected sequence of reconstructed three-dimensional wave-field phase distributions during the domain nucleation and growth in the LN crystal. The six frames labeled as (a) - (f) show the nucleation and growth of individual 180° domain microstructure in the wafer at different times after the application of the steady voltage (at t = 0s). The times t (in seconds) corresponding to each frame are (a) 3.6, (b)4.4, (c)4.8, (d)5.0, (e)6.8 and (f)8.6s. The polarization axis is along the c-axis.

Fig. 2
Fig. 2

The evolution of the longitudinal section in the nucleation and growth of individual 180° domain microstructure in the wafer at different times after the application of the steady voltage (at t = 0s).

Fig. 3
Fig. 3

(a) The reversed domain depth at different positions of the light spot varies with time. (b) The velocity of the reversed domain walls at different times.

Fig. 4
Fig. 4

The evolution of the space charge field produced by light excited carriers at different times after the application of the steady voltage (at t = 0s). The times t (in seconds) corresponding to each frame are (a) 4.4, (b) 5.2, (c) 5.6, (d)8.0, (e) 9.2, (f) 10.2 and (g) 19.2, separately.

Fig. 5
Fig. 5

The schematic diagram for light-assisted domain reversal process. (a) The distribution of light-excited electrons and holes. (b) The formation of a light-assisted reversed domain on –c face. (c) The reversed domain with a flat-top shape. (d) The domain tips at the periphery of spot arrive at + c surface. (e) The light-assisted domain reversal completed. The bottom line is the schematic diagram of reversed domain on the –c surface.

Metrics