Abstract

Ophthalmic hydrogel polymers are micromachined with near-infrared femtosecond laser pulses. Refractive index changes up to + 0.05 have been obtained, and lateral gradient index refractive structures are written into the flat polymers. By measuring the transmitted wavefront of the micromachined polymer, we find induced astigmatism as high as 0.8 diopters in the micromachined region.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26(19), 1516–1518 (2001).
    [CrossRef] [PubMed]
  2. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express10(15), 645–652 (2002).
    [PubMed]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  4. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express12(17), 4019–4024 (2004).
    [CrossRef] [PubMed]
  5. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett.30(4), 352–354 (2005).
    [CrossRef] [PubMed]
  6. R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett.29(16), 1900–1902 (2004).
    [CrossRef] [PubMed]
  7. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  8. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001).
    [CrossRef] [PubMed]
  9. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19(10), 2496–2504 (2002).
    [CrossRef]
  10. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  11. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett.30(7), 723–725 (2005).
    [CrossRef] [PubMed]
  12. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express14(24), 11901–11909 (2006).
    [CrossRef] [PubMed]
  13. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express16(26), 21914–21921 (2008).
    [CrossRef] [PubMed]
  14. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B26(4), 595–602 (2009).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), Chap. 5.
  16. A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004).
    [CrossRef] [PubMed]
  17. L. Xu, W. H. Knox, and K. R. Huxlin, “Exogenous and endogenous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express1, 1159–1164 (2011) (feature issue on nonlinear optics).

2011 (1)

2009 (1)

2008 (1)

2006 (1)

2005 (2)

2004 (3)

2002 (2)

2001 (3)

1996 (2)

Anderson, N.

Artal, P.

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

Blackwell, R.

Blackwell, R. I.

Borrelli, N. F.

Brodeur, A.

Callan, J. P.

Cancado, L. G.

Cerullo, G.

Chiodo, N.

Davis, K. M.

della Valle, G.

Ding, L.

Finlay, R. J.

Fujimoto, J. G.

García, J. F.

Glezer, E. N.

Guirao, A.

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

Hartl, I.

Her, T. H.

Hibino, Y.

Hirao, K.

Huang, L.

Huxlin, K. R.

Ippen, E. P.

Jani, D.

Killi, A.

Knox, W. H.

Kohtoku, M.

Kopf, D.

Kowalevicz, A. M.

Künzler, J. F.

Kuroiwa, Y.

Labenski, G.

Lederer, M.

Linhardt, J.

Mazur, E.

Milosavljevic, M.

Minoshima, K.

Miura, K.

Morgner, U.

Narita, Y.

Nasu, Y.

Novotny, L.

Osellame, R.

Pawar, S.

Ramponi, R.

Schaffer, C. B.

Smith, T.

Streltsov, A. M.

Sugimoto, N.

Taccheo, S.

Takeshima, N.

Tanaka, S.

Tejedor, J.

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

Xu, L.

Invest. Ophthalmol. Vis. Sci. (1)

A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci.45(12), 4312–4319 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (8)

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett.29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001).
[CrossRef] [PubMed]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001).
[CrossRef] [PubMed]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26(19), 1516–1518 (2001).
[CrossRef] [PubMed]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett.30(4), 352–354 (2005).
[CrossRef] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett.30(7), 723–725 (2005).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for femtosecond laser micromachining.

Fig. 2
Fig. 2

Transmission spectrum of Akreos® sample (Bausch & Lomb).

Fig. 3
Fig. 3

Phase contrast image of gratings written at 5mm/s (A) and 70 mm/s (B). Other parameters are: laser wavelength 800 nm, pulse width ~100 fs, average power ~400 mW, repetition rate 80 MHz, and depth of grating from front surface ~150 μm.

Fig. 4
Fig. 4

Plot of refractive index change induced by femtosecond laser micromachining as a function of scanning speed (mm/s).

Fig. 5
Fig. 5

(A): A thin lens model with constant refractive index but curvature on both surfaces. The phase transformation leads to the lens power [15]; (B): Our lateral gradient index structure within a flat polymer sample. The refractive index change region inside the sample has a layered gradient index profile that consists of gradient index layers that are parallel to the material surfaces.

Fig. 6
Fig. 6

(A): Experimental design of a cylindrical lens induced by femtosecond laser micromachining. Refractive index change is constant along y axis, and varies in a parabolic manner on x axis. The refractive index change is maximum in center and minimum at two edges on x axis. (B): Diagram illustrating wavefront measurement of the cylindrical lens. A pupil diameter of 1.5 mm is used, with pupil separation of 0.5 mm for measuring at different locations inside the cylindrical lens.

Fig. 7
Fig. 7

Interferogram of polymer sample (Akreos®) with cylindrical lens written in the rectangular area. The solid curve represent the trend of fringes of the bulk sample. The additional curve in rectangular area shows additional parabolic phase added to the bulk sample fringes.

Fig. 8
Fig. 8

Differential interference contrast mode images of Akreos® sample doped with X-Monomer, showing no substantial change of the grating over a >30 month period. (A): The Akreos® sample with grating written on 10/31/2008 (as-written); (B): The same sample re-measured on 06/06/2011 (2 years, 7 months, 6 days later).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ(x,y)=knΔ(x,y)+k[ Δ 0 Δ(x,y)]
t(x,y)= e jkn Δ 0 e jk x 2 + y 2 2f
φ ' (x,y)=k n 0 ( Δ 0 t)+k n 1 (x,y)t
t ' (x,y)= e jk n 0 Δ 0 e jkΔn(x,y)t
Δn(x,y)= 1( x 2 + y 2 ) 2ft
t ' (x,y)= e jk n 0 Δ 0 e j k 2f e jk x 2 + y 2 2f
Astigmatism= 1 r 0 2 4 6 c 1 2 + c 2 2

Metrics