Abstract

We present time-resolved studies of the dielectric breakdown using tightly focused femtosecond (fs) laser pulses in glass. Axial evolution of the breakdown and material modifications have been retrieved over the time span from 0 to 1 ns with a 50 fs resolution and ∼ 1 μm spatial resolution using interferometric pump-probe technique. It is shown that even at pulse power slightly above critical Pcr ≃ 1 MW/pulse, the filamentation was limited at tight focusing and the central focal region with resolidified glass was localised axially within ∼ 10 μm; it can be used for the waveguide recording. Mechanisms of light-matter interaction at tight focusing and application potential are discussed. The electron-ion scattering time, τe–i ≃ 1.1 fs, for the glass at electron concentration ne ≃ (4–5)×1020 cm−3 was determined within Drude approximation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
    [CrossRef] [PubMed]
  2. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fussed silica,” Opt. Lett.30, 320–322 (2005).
    [CrossRef] [PubMed]
  3. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
    [CrossRef] [PubMed]
  4. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
    [CrossRef]
  5. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
    [CrossRef]
  6. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
    [CrossRef] [PubMed]
  7. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
    [CrossRef]
  8. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
    [CrossRef]
  9. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
    [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
    [CrossRef]
  11. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express17, 10076–10081 (2009).
    [CrossRef] [PubMed]
  12. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  13. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  14. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
    [CrossRef]
  15. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
    [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  17. C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967).
    [CrossRef]
  18. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
    [CrossRef]
  19. A. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10, 196–203 (2002).
    [PubMed]
  20. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
    [CrossRef]
  21. X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
    [CrossRef]
  22. V. V. Temnov, K. S.- Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006).
    [CrossRef]
  23. A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009).
    [CrossRef]
  24. T. Balčiunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett.33, 58–60 (2008).
    [CrossRef]
  25. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
    [CrossRef]
  26. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
    [CrossRef]
  27. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
    [CrossRef]
  28. L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
    [CrossRef]
  29. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
    [CrossRef]
  30. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
    [CrossRef] [PubMed]
  31. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
    [CrossRef]
  32. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
    [CrossRef]
  33. S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
    [CrossRef]
  34. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  35. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  36. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
    [CrossRef]
  37. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
    [CrossRef]
  38. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.
  39. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
    [CrossRef]
  40. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
    [CrossRef]
  41. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
    [PubMed]
  42. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
    [CrossRef]
  43. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
    [CrossRef]
  44. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).
  45. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41, 3628–3633 (2002).
    [CrossRef] [PubMed]
  46. S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
    [CrossRef]

2011

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

2010

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

2009

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express17, 10076–10081 (2009).
[CrossRef] [PubMed]

2008

2007

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
[CrossRef]

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

2006

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

V. V. Temnov, K. S.- Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006).
[CrossRef]

2005

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fussed silica,” Opt. Lett.30, 320–322 (2005).
[CrossRef] [PubMed]

2003

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

2002

2001

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

2000

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
[CrossRef]

1996

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

1967

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967).
[CrossRef]

1843

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).

Abraham, E.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

Bado, P.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Balciunas, T.

Bell, C. E.

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967).
[CrossRef]

Bellouard, Y.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Benayas, A.

Bickauskaite, G.

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Bourgeade, A.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Bressel, L.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

Bude, J. D.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).

Buividas, R.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

Carr, C. W.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).

Cerullo, G.

Chen, K. P.

Chen, W. J.

Cheng, G.

Danilevicius, P.

Davis, K. M.

de la Cruz, A. R.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).

Demos, S. G.

Dugan, M.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Eaton, S. M.

Fernandez, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Franco, M.

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

Fukumura, H.

Gadonas, R.

Gaižauskas, E.

Gamaly, E.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

Gamaly, E. E.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Glezer, E. N.

Gong, Q.

Greif, R.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Grieco, A.

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

Hallo, L.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Hashimoto, T.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

Hatanaka, K.

Hayasaki, Y.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

Hébert, D.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Herman, P. R.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Ho, S.

Hooks, D. E.

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

Ida, T.

Isaka, M.

Jaque, D.

Jarutis, V.

Jiang, H.

Juodkazis, S.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[PubMed]

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Kim, A. M.-T.

Kitamura, K.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Kozlowski, M. R.

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

Krolokowski, W.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Landt, J. A.

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967).
[CrossRef]

Laporta, P.

Li, J. Z.

Liu, Y.

Louchev, O. A.

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

Luther-Davies, B.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Malinauskas, M.

Mao, S. S.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Mao, X.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Marangoni, M.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Martinez-Andrieux, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

Matsumoto, H.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
[CrossRef]

Matsuo, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Matsushima, S.-I.

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

Mazur, E.

A. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10, 196–203 (2002).
[PubMed]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

McGrane, S. D.

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

McMillen, B.

Melninkaitis, A.

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Mézel, C.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Minoshima, K.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
[CrossRef]

Misawa, H.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[PubMed]

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Mishchik, K.

Miura, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Moore, D. S.

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

Murazawa, N.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

Mysyrowicz, A.

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

Ng, M. L.

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Nishimura, N.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Ono, H.

Osellame, R.

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Polli, D.

Prade, B.

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Ramos, K. J.

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

Ramponi, R.

Rode, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Russo, E.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Said, A. A.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Schaffer, A. B.

Shimotsuma, Y.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Silvestri, S. D.

Sirutkaitis, V.

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

Staggs, M.

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

Sudrie L, L.

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

Sun, Q.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

Taccheo, S.

Takita, A.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

Tamosauskas, G.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Temnov, V. V.

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

Tikhonchuk, V.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Tinten, K. S.-

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Vanagas, E.

Vogel, A.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

von der Linde, D.

Wakatsuki, H.

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

Wen, A.-B.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Wu, Z.

Yang, H.

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Zeng, X.

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

Zhang, H.

Zhou, P.

Žukauskas, A.

Appl. Opt.

Appl. Phys. A

S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008).
[CrossRef]

C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005).
[CrossRef]

J. Acoust. Soc. Am.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996).
[CrossRef]

J. Appl. Phys.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009).
[CrossRef]

J. Non-Cryst. Solids

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

J. Non-Crystal. Sol.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011).
[CrossRef]

J. Opt.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009).
[CrossRef]

Laser Photon. Rev.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009).
[CrossRef]

Nanotechnology

S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006).
[CrossRef]

Nat. Commun.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011).
[CrossRef] [PubMed]

Nat. Mater.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

New J. Phys.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007).
[CrossRef]

Opt. Commun.

L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001).
[CrossRef]

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000).
[CrossRef]

Opt. Express

A. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10, 196–203 (2002).
[PubMed]

S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express17, 10076–10081 (2009).
[CrossRef] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Phys. Rev. Lett.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011).
[CrossRef] [PubMed]

Other

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle (a) and realization (b) of interferometric pump-probe side-imaging; an actual interferogram is shown on the PC screen.

Fig. 2
Fig. 2

Axial cross-sections and maps of the phase and amplitude at different time delays. Vertical lines are eyeguides of the focal region and are separated by 9 μm. Pulse energy Ep = 200 nJ. Intensity of the phase and amplitude images at t → ∞ was 10× multiplied to make the changes recognizable. The amplitude image was divided by the reference image obtained before laser pulse irradiation and has the range between ∼ 0.2 to 1.84. The pulse travels from left to right on the map images.

Fig. 3
Fig. 3

Transients of the on-axis phase (a) and amplitude ((b) as in Fig. 2) at the observation point zo, which is set at the location where the maximum phase change occurred during the entire observation time window; a negative shift on z-axis is measured from the center of the geometrical focus, zf. The location zo is where the void formation is expected and it is plotted in (c). Pulse energy Ep is estimated at the focal region. Gray region in (c) shows expected change of the self-focusing length according to scaling z sf 1 / ( E p / E cr 1 ) [27] where self-focusing threshold was taken at power corresponding to the Ecr = 50 nJ or Pcr ≃ 1 MW/pulse.

Fig. 4
Fig. 4

The on-axis phase distribution close to the geometrical focus zf, which is determined with ±1 μm precision at different time moments. Pulse energy Ep = 200 nJ. Arrow shows the feature on the modification front which moved slower that speed of sound in solid glass.

Fig. 5
Fig. 5

Phase and amplitude maps after all relaxation processes t → ∞ at several pulse energies; dv,d is the thickness of the void and denser phase, respectively, assuming cylindrical cross section.

Fig. 6
Fig. 6

Maximum refractive index changes, Δn calculated assuming the phase delay in a region of refractive index change of the thickness dv,d for the void and denser phase, respectively, according to Δ ϕ = 2 π λ Δ n d v , d; the negative phase shift at −Δn corresponds to the positive phase on the images (brighter regions). Region of energies when void is formed after all relaxation is shown in a box.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W ( ν ) = 1 2 [ 1 + cos ( π | ν ν c | h ) ] if | ν ν c | h = 0 otherwise
ln ( I b / I pl ) 4 π n 0 D × 1 + ω 2 τ e i 2 ω τ e i = 1 ,

Metrics