Abstract

The pioneering material utilized in first optical mixing revisits nonlinear optics with the cutting-edge polarity-control technology stress-induced twinning. Periodically twinned quartz with modulated polarity demonstrates quasi-phase-matched SHG emitting vacuum UV light at 193 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology 200–201 (Noyes Publications, New Jersey, 2001).
  2. M. J. Soileau and M. Bass, “Laser-induced breakdown in crystalline and amorphous SiO2,” IEEE J. Quantum Electron.16(8), 814–814 (1980).
    [CrossRef]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
    [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
    [CrossRef]
  5. M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  6. M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
    [CrossRef]
  7. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
    [CrossRef]
  8. M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
    [CrossRef]
  9. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
    [CrossRef]
  10. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
    [CrossRef]
  11. N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
    [CrossRef]
  12. A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
    [CrossRef]
  13. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength convertersbased on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.
  14. H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
    [CrossRef]
  15. C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
    [CrossRef]
  16. S. Kurimura, R. Batchko, J. Mansell, R. Route, M. Fejer, and R. Byer, “Twinned quartz for quasi-phase matched ultraviolet generation,” Stanford University CNOM annual report, A4 (1998).
  17. M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
    [CrossRef]
  18. M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
    [CrossRef]
  19. S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: vacuum-UV emission in phase matching,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NTuD1.
  20. Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
    [CrossRef]
  21. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
    [CrossRef]
  22. R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express19(12), 11867–11872 (2011).
    [CrossRef] [PubMed]
  23. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Consultant Bureau, 1964).
  24. S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
    [CrossRef]
  25. K. Aizu, “Second-order ferroic state shifts,” J. Phys. Soc. Jpn.34(1), 121–128 (1973).
    [CrossRef]
  26. T. Yamada, K. Hayashi, S. Kurimura, N. E. Yu, and K. Kitamura, “High-aspect-ratio periodical twin structure for QPM SHG in quartz,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2004), paper CThKK1.
  27. M. Bass, ed., Handbook of Optics (McGraw-Hill, 1995), Vol. II, 33.66.
  28. M. Adachi, S. Kurimura, K. Hayashi, and K. Kitamura, “Deep ultraviolet light generation at 266 nm by quasi-phase-matched quartz,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2007), paper JTuA99.
  29. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.

2011

2007

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

2006

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

2005

M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
[CrossRef]

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
[CrossRef]

2004

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

2003

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

1996

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
[CrossRef]

1992

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1989

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
[CrossRef]

1984

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

1980

M. J. Soileau and M. Bass, “Laser-induced breakdown in crystalline and amorphous SiO2,” IEEE J. Quantum Electron.16(8), 814–814 (1980).
[CrossRef]

1976

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
[CrossRef]

1973

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
[CrossRef]

K. Aizu, “Second-order ferroic state shifts,” J. Phys. Soc. Jpn.34(1), 121–128 (1973).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

1961

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Aizu, K.

K. Aizu, “Second-order ferroic state shifts,” J. Phys. Soc. Jpn.34(1), 121–128 (1973).
[CrossRef]

Anderson, T. L.

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Ashihara, S.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Bass, M.

M. J. Soileau and M. Bass, “Laser-induced breakdown in crystalline and amorphous SiO2,” IEEE J. Quantum Electron.16(8), 814–814 (1980).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Byer, R. L.

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
[CrossRef]

Cha, M.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Chen, C.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
[CrossRef]

Cross, L. E.

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Fejer, M. M.

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Harada, M.

M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
[CrossRef]

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Hirohashi, J.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Ichikawa, J.

Ieiri, S.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
[CrossRef]

Ishizuki, H.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Iwasaki, Y.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Jeon, O.-Y.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Jundt, D. H.

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

Kikuchi, K.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Kondou, K.

Kou, R.

Kurimura, S.

R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express19(12), 11867–11872 (2011).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
[CrossRef]

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
[CrossRef]

Kuroda, A.

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
[CrossRef]

Kuroda, K.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Lim, E. J.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
[CrossRef]

Lin, Z.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
[CrossRef]

Magel, Q. A.

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Maruyama, M.

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

Muramatsu, K.

M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
[CrossRef]

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

Nakajima, H.

R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express19(12), 11867–11872 (2011).
[CrossRef] [PubMed]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

Nakamura, M.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

Newnham, R. E.

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

Ohta, T.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Okada, M.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Ro, J. H.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Sakuma, J.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

Sasaki, Y.

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
[CrossRef]

Shiau, S. M.

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

Shibata, K.

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
[CrossRef]

Shimura, T.

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Soileau, M. J.

M. J. Soileau and M. Bass, “Laser-induced breakdown in crystalline and amorphous SiO2,” IEEE J. Quantum Electron.16(8), 814–814 (1980).
[CrossRef]

Suematsu, Y.

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
[CrossRef]

Sumiyoshi, T.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

Taira, T.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Takada, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

Takizawa, K.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
[CrossRef]

Terasaki, A.

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

Uesu, Y.

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
[CrossRef]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

Wang, Z.

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Yu, N. E.

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

Appl. Phys. B

C. Chen, Z. Lin, and Z. Wang, “The development of new borate-based UV nonlinear optical crystals,” Appl. Phys. B80(1), 1–25 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett.89(1), 011101 (2006).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett.85(22), 5134–5136 (2004).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett.90(5), 051115 (2007).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, O.-Y. Jeon, M. Cha, S. Ashihara, T. Ohta, T. Shimura, K. Kuroda, and J. Hirohashi, “Efficient second-harmonic generation of ultrafast pulses in periodically poled KNbO3,” Appl. Phys. Lett.85(24), 5839–5841 (2004).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett.69(11), 1565–1567 (1996).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett.23(3), 137–138 (1973).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett.89(19), 191123 (2006).
[CrossRef]

Electron. Lett.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett.25(3), 174–175 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, Q. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

M. J. Soileau and M. Bass, “Laser-induced breakdown in crystalline and amorphous SiO2,” IEEE J. Quantum Electron.16(8), 814–814 (1980).
[CrossRef]

J. Mater. Res.

M. Harada, K. Muramatsu, Y. Iwasaki, S. Kurimura, and T. Taira, “Periodic twinning in crystal quartz for optical quasi-phase matched secondary harmonic conversion,” J. Mater. Res.19(04), 969–972 (2004).
[CrossRef]

J. Phys. Soc. Jpn.

K. Aizu, “Second-order ferroic state shifts,” J. Phys. Soc. Jpn.34(1), 121–128 (1973).
[CrossRef]

Jpn. J. Appl. Phys.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic Poling in 3-mm-thick MgO: LiNbO3 Crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Mater. Res. Bull.

S. M. Shiau, T. L. Anderson, R. E. Newnham, and L. E. Cross, “Temperature Dependence of Ferrobielastic Switching in Quartz,” Mater. Res. Bull.19(7), 831–836 (1984).
[CrossRef]

Opt. Commun.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure,” Opt. Commun.18(3), 331–334 (1976).
[CrossRef]

Opt. Express

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. Lett.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961).
[CrossRef]

Proc. SPIE

M. Harada, K. Muramatsu, and S. Kurimura, “Quasi-phase matched second harmonic generation in crystal quartz,” Proc. SPIE5633, 40–54 (2005).
[CrossRef]

Other

S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: vacuum-UV emission in phase matching,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NTuD1.

S. Kurimura, R. Batchko, J. Mansell, R. Route, M. Fejer, and R. Byer, “Twinned quartz for quasi-phase matched ultraviolet generation,” Stanford University CNOM annual report, A4 (1998).

K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology 200–201 (Noyes Publications, New Jersey, 2001).

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength convertersbased on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Consultant Bureau, 1964).

T. Yamada, K. Hayashi, S. Kurimura, N. E. Yu, and K. Kitamura, “High-aspect-ratio periodical twin structure for QPM SHG in quartz,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2004), paper CThKK1.

M. Bass, ed., Handbook of Optics (McGraw-Hill, 1995), Vol. II, 33.66.

M. Adachi, S. Kurimura, K. Hayashi, and K. Kitamura, “Deep ultraviolet light generation at 266 nm by quasi-phase-matched quartz,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2007), paper JTuA99.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Atomic configuration of twin states in Wigner-Seitz cell of crystalline quartz.

Fig. 2
Fig. 2

a) Crystal orientation and twin configuration. b) Coercive stress and efficiency with respect to crystal orientation.

Fig. 3
Fig. 3

a) Stress application to surface-stepped quartz at high temperature, b) Quartz substrate surface-patterned by mechanical dicing or dry etching.

Fig. 4
Fig. 4

In situ observation of twinning process: temporal evolution from a) to c).

Fig. 5
Fig. 5

In situ observed image of periodic twins with 17.8 μm period.

Fig. 6
Fig. 6

Stress maintaining module for stable VUV emission.

Fig. 7
Fig. 7

Wavelength dependence of required period for 1st-order QPM SHG: solid curve: calculated by dispersion equation [27], black circle: measured by Ti:sapphire laser.

Fig. 8
Fig. 8

(a) Etched twin structure and (b) Input/output characteristics in SHG at 266 nm.

Fig. 9
Fig. 9

Input/output characteristics in VUV SHG at 193 nm from QPM quartz.

Tables (1)

Tables Icon

Table 1 Comparison between Conventional Ferroelectrics and Quartz for QPM

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔG=2 s 1123 ( σ 11 σ 23 σ 22 σ 23 + σ 31 σ 12 )
ΔG=2 s 1123 ( σ 0 ) 2 ( cosθ' ) 3 sinθ'
η=( P 2ω P ω )= 16 π 2 h( B,ξ ) ( λ ω ) 3 n ω n 2ω ε 0 c ( d eff ) 2 P ω L
d eff =(2/π) d 11 =(2/π) d 12 ( cosθ' ) 2

Metrics