Abstract

This paper focuses on the subject of nanoparticle-based absorbers and fluorophores for numerous high-efficiency absorber and emitter device applications. The latter includes the use of two-photon-absorption-induced fluorescence (TPAF) in such nanoparticles for medical applications such as deep-tissue imaging and deep-tissue photodynamic therapy (PDT). In particular, we propose and elucidate the use of advanced plasmonic quantum dot nanoparticle assemblies for such applications, and specify the design of optimized nanostructures that should result in enhancement of fluorescence signal intensity (and corresponding increases in PDT efficacies) by > 160,000 compared to those obtainable under comparable illumination conditions – from the same fluorescent labels (quantum dots or otherwise) used without plasmonic enhancement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
    [CrossRef] [PubMed]
  2. E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
    [CrossRef] [PubMed]
  3. L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.
  4. R. K. Jain, “Advanced plasmonic devices for optoelectronic and integrated plasmon-optic circuit applications,” proposal submitted to AFOSR, CHTM UNM reference number 235/1099 (2009).
  5. L. Wang and R. K. Jain, “Novel non-toxic synthetic luminophores for imaging application,” UNM Invention Disclosure (2010).
  6. L. Wang, “Nonlinear optics in quantum-confined and surface-plasmon structures,” https://repository.unm.edu/handle/1928/10916 (2010). Electrical and Computer Engineering.
  7. M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982).
    [CrossRef]
  8. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
    [CrossRef]
  9. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
    [CrossRef]
  10. J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys.4, 2780–2786 (2002).
    [CrossRef]
  11. D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
    [CrossRef]
  12. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
    [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
    [CrossRef] [PubMed]
  14. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72, 073405 (2005).
    [CrossRef]
  15. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
    [CrossRef]
  16. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
    [CrossRef] [PubMed]
  17. M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
    [CrossRef] [PubMed]
  18. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009).
    [CrossRef]
  19. X. Miao, I. Brener, and T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B27, 1561–1570 (2010).
    [CrossRef]
  20. J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011).
    [CrossRef]
  21. S. J. Norton and T. Vo-Dinh, “Plasmonics quenching and enhancement of a fluorescing molecule outside and inside a silver metallic nanoshell,” IEEE Trans. Nano. (2011). Accepted for publication.
    [CrossRef]
  22. E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier Science, 2008), 1st ed. Published: Hardcover.
  23. M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
    [CrossRef]
  24. X. Wang, K. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to film,” Opt. Express18, 24859–24867 (2010).
    [CrossRef] [PubMed]
  25. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6, 787–796 (1989).
    [CrossRef]
  26. R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
    [CrossRef]
  27. J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
    [CrossRef] [PubMed]
  28. A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Chem. Phys. C112, 10641–10652 (2008).
    [CrossRef]
  29. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
    [CrossRef]
  30. W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983).
    [CrossRef]

2011 (1)

J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011).
[CrossRef]

2010 (4)

M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

X. Wang, K. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to film,” Opt. Express18, 24859–24867 (2010).
[CrossRef] [PubMed]

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
[CrossRef] [PubMed]

X. Miao, I. Brener, and T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B27, 1561–1570 (2010).
[CrossRef]

2009 (3)

M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
[CrossRef] [PubMed]

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009).
[CrossRef]

E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
[CrossRef] [PubMed]

2008 (3)

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
[CrossRef] [PubMed]

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Chem. Phys. C112, 10641–10652 (2008).
[CrossRef]

2006 (1)

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

2005 (1)

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72, 073405 (2005).
[CrossRef]

2004 (2)

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

2003 (3)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys.4, 2780–2786 (2002).
[CrossRef]

1999 (1)

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

1997 (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

1989 (1)

1983 (1)

W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983).
[CrossRef]

1982 (1)

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982).
[CrossRef]

’t Hart, D. C.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Ameer, G. A.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

Ankuciwiez, D.

L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.

Averitt, R. D.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Backman, V.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Bhargava, R.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
[CrossRef] [PubMed]

Birnboim, M. H.

Blatchford, C. G.

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982).
[CrossRef]

Brener, I.

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

Bryan, W. W.

J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
[CrossRef] [PubMed]

Chen, J.

L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.

Chen, K.

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

de Mello Donega, C.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Dressel, M.

M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Enderlein, J.

J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys.4, 2780–2786 (2002).
[CrossRef]

Etchegoin, P.

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier Science, 2008), 1st ed. Published: Hardcover.

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Gao, X.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009).
[CrossRef]

Gompf, B.

M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Halas, N. J.

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Hilhorst, J.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Hirsch, L. R.

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

Hovel, M.

M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

Jain, R. K.

L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.

R. K. Jain, “Advanced plasmonic devices for optoelectronic and integrated plasmon-optic circuit applications,” proposal submitted to AFOSR, CHTM UNM reference number 235/1099 (2009).

L. Wang and R. K. Jain, “Novel non-toxic synthetic luminophores for imaging application,” UNM Invention Disclosure (2010).

Jin, Y.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009).
[CrossRef]

Kerker, M.

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982).
[CrossRef]

Kim, J.

J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
[CrossRef] [PubMed]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Kodali, A. K.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
[CrossRef] [PubMed]

Koole, R.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Korgel, B. A.

M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
[CrossRef] [PubMed]

Kraus, W. A.

W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983).
[CrossRef]

Kurzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

Lee, T. R.

J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
[CrossRef] [PubMed]

Liaw, J.

J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011).
[CrossRef]

Liu, C.

J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011).
[CrossRef]

Liu, Y.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

Llora, X.

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
[CrossRef] [PubMed]

Luk, T. S.

MacRobert, A. J.

E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
[CrossRef] [PubMed]

Meijerink, A.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Miao, X.

Moroz, A.

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Chem. Phys. C112, 10641–10652 (2008).
[CrossRef]

Neeves, A. E.

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Nolte, D. D.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

Norton, S. J.

S. J. Norton and T. Vo-Dinh, “Plasmonics quenching and enhancement of a fluorescing molecule outside and inside a silver metallic nanoshell,” IEEE Trans. Nano. (2011). Accepted for publication.
[CrossRef]

O’Neal, D.

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

Payne, J.

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

Rasch, M. R.

M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
[CrossRef] [PubMed]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Ru, E. L.

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier Science, 2008), 1st ed. Published: Hardcover.

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Schatz, G. C.

W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983).
[CrossRef]

Seifalian, A. M.

E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
[CrossRef] [PubMed]

Sokolov, K. V.

M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
[CrossRef] [PubMed]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

van Blaaderen, A.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

van Schooneveld, M. M.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Van-maekelbergh, D.

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

Vo-Dinh, T.

S. J. Norton and T. Vo-Dinh, “Plasmonics quenching and enhancement of a fluorescing molecule outside and inside a silver metallic nanoshell,” IEEE Trans. Nano. (2011). Accepted for publication.
[CrossRef]

Wang, L.

L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.

L. Wang and R. K. Jain, “Novel non-toxic synthetic luminophores for imaging application,” UNM Invention Disclosure (2010).

Wang, X.

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

West, J. L.

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

Xia, X.

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

Xu, H.

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72, 073405 (2005).
[CrossRef]

Yaghini, E.

E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
[CrossRef] [PubMed]

Zhao, M.

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82, 257–259 (2003).
[CrossRef]

Cancer Lett. (1)

D. O’Neal, L. R. Hirsch, N. J. Halas, J. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

Chem. Mater. (1)

R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donega, D. C. ’t Hart, A. van Blaaderen, D. Van-maekelbergh, and A. Meijerink, “On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method,” Chem. Mater.20, 2503–2512 (2008).
[CrossRef]

J. Chem. Phys. (2)

W. A. Kraus and G. C. Schatz, “Plasmon resonance broadening in small metal particles,” J. Chem. Phys.79, 6130–6139 (1983).
[CrossRef]

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys.111, 4729–4735 (1999).
[CrossRef]

J. Chem. Phys. C (1)

A. Moroz, “Electron mean free path in a spherical shell geometry,” J. Chem. Phys. C112, 10641–10652 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Quant. Spec. Rad. Trans. (1)

J. Liaw and C. Liu, “Plasmonic effect of nanoshelled nanocavity on encapsulated emitter’s spontaneous emission,” J. Quant. Spec. Rad. Trans.112, 2480–2485 (2011).
[CrossRef]

Langmuir (2)

J. Kim, W. W. Bryan, and T. R. Lee, “Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores,” Langmuir24, 11147–11152 (2008).
[CrossRef] [PubMed]

M. R. Rasch, K. V. Sokolov, and B. A. Korgel, “Limitations on the optical tunability of small diameter gold nanoshells,” Langmuir25, 11777–11785 (2009).
[CrossRef] [PubMed]

Nano Letters (1)

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “gold nanoshells improve single nanoparticle molecular sensors,” Nano Letters4, 1853–1857 (2004).
[CrossRef]

Nanomedicine (1)

E. Yaghini, A. M. Seifalian, and A. J. MacRobert, “Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy,” Nanomedicine4, 353–363 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology17, 5435–5440 (2006).
[CrossRef]

Nat. Nano (1)

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nano4, 571–576 (2009).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys.4, 2780–2786 (2002).
[CrossRef]

Phys. Rev. B (3)

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B26, 4052–4063 (1982).
[CrossRef]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72, 073405 (2005).
[CrossRef]

M. Hovel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B81, 035402 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997).
[CrossRef]

Proc. Nat. Acad. Sci. (1)

A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Nat. Acad. Sci.107, 13620 –13625 (2010).
[CrossRef] [PubMed]

Science (2)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300, 1434 –1436 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 –422 (2003).
[CrossRef] [PubMed]

Other (6)

L. Wang, D. Ankuciwiez, J. Chen, and R. K. Jain, “Enhancement of Two-Photon Absorption-Induced fluorescence in semiconductor quantum dots by gold nanoparticles,” in “Nonlinear Optics: Materials, Fundamentals and Applications,” (Optical Society of America, 2009), p. NME4.

R. K. Jain, “Advanced plasmonic devices for optoelectronic and integrated plasmon-optic circuit applications,” proposal submitted to AFOSR, CHTM UNM reference number 235/1099 (2009).

L. Wang and R. K. Jain, “Novel non-toxic synthetic luminophores for imaging application,” UNM Invention Disclosure (2010).

L. Wang, “Nonlinear optics in quantum-confined and surface-plasmon structures,” https://repository.unm.edu/handle/1928/10916 (2010). Electrical and Computer Engineering.

S. J. Norton and T. Vo-Dinh, “Plasmonics quenching and enhancement of a fluorescing molecule outside and inside a silver metallic nanoshell,” IEEE Trans. Nano. (2011). Accepted for publication.
[CrossRef]

E. L. Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier Science, 2008), 1st ed. Published: Hardcover.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic of a basic double-shelled PQD nanostructure with dielectric spacer

Fig. 2
Fig. 2

EFE as a function of dielectric permittivity and noble metal layer thickness for silver-shelled NP at 800 nm

Fig. 3
Fig. 3

EFE as a function of dielectric permittivity and noble metal layer thickness for silver shelled NP at 950 nm

Fig. 4
Fig. 4

EFE as a function of dielectric permittivity and noble metal layer thickness for gold shelled NP at 800 nm

Fig. 5
Fig. 5

EFE as a function of dielectric permittivity and noble metal layer thickness for gold shelled NP at 950 nm

Fig. 6
Fig. 6

EFE at 800 nm and 950 nm as a function of dielectric rel. permittivity for 2.6 nm noble metal layer thickness

Fig. 7
Fig. 7

EFE of Silica/Gold NP using quasi static model

Fig. 8
Fig. 8

EFE as a function of dielectric rel. permittivity for r1/r2 ratio of .86

Fig. 9
Fig. 9

EFE as a function of silica radius and gold thickness for silica/gold (SG) NP

Fig. 10
Fig. 10

EFE as a function of silica radius and gold thickness for for QD/silica/gold (QDSG) NP

Fig. 11
Fig. 11

EFE plot with/without QD, silica radius= 20 nm

Fig. 12
Fig. 12

Spatial distribution of EFE within QDSG NP

Fig. 13
Fig. 13

Schematic of a 4-shell (two metal shells) PQD NP

Fig. 14
Fig. 14

EFE for 4-shell NP as function of innermost layer thicknesses

Fig. 15
Fig. 15

EFE for 4-shell NP as function of outermost layer thicknesses

Fig. 16
Fig. 16

Spatial distribution of EFE for 4-shell NP

Fig. 17
Fig. 17

Magnified spatial EFE plot for 4-shell NP

Fig. 18
Fig. 18

TEM image of synthesized silica coated QDs

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E l = n , m α nm l M nm ( 1 ) ( k l , r , Ω ) + δ nm l M nm ( 3 ) ( k l , r , Ω ) + γ nm l N nm ( 1 ) ( k l , r , Ω ) + β nm l N nm ( 3 ) ( k l , r , Ω )
H l = n , m α nm l k l N nm ( 1 ) ( k l , r ) + δ nm l k l N nm ( 3 ) ( k l , r ) + γ nm l k l M nm ( 1 ) ( k l , r ) + β nm l k l M nm ( 3 ) ( k l , r )
M nm ( i ) ( k , r , Ω ) = × r ξ ( i ) ( k , r , Ω ) r ^ ,
N nm ( i ) ( k , r , Ω ) = 1 k × M nm ( i ) ( k , r , Ω ) ,
ξ ( i ) ( k , r , Ω ) = 1 n ( n + 1 ) z n ( i ) ( k r ) Y nm ( Ω ) ,
z n ( 1 ) ( k r ) = j ( k r ) ,
z n ( 3 ) ( k r ) = h 1 ( k r ) ,
M nm ( i ) ( k , r , Ω ) N n m ( j ) * ( k , r , Ω ) d Ω = 0
N nm ( i ) ( k , r , Ω ) N n m ( j ) * ( k , r , Ω ) d Ω = 0 m m n n
M nm ( i ) ( k , r , Ω ) M n m ( j ) * ( k , r , Ω ) d Ω = 0 m m n n
nm l ( r l ) × r ^ = nm l + 1 ( r l ) × r ^
𝒬 nm l ( r l ) × r ^ = 𝒬 nm l + 1 ( r l ) × r ^
𝒮 nm l ( r l ) × r ^ = 𝒮 nm l + 1 ( r l ) × r ^
𝒯 nm l ( r l ) × r ^ = 𝒯 nm l + 1 ( r l ) × r ^
δ nm = β nm = 0 n , m α nm = γ nm = 0 | m | 1 α n 1 = i n + 1 π ( 2 n + 1 )
E s = n , m δ nm l M nm ( 3 ) ( k l , r , Ω ) + β nm l N nm ( 3 ) ( k l , r , Ω )
E 1 = 9 ɛ 2 ɛ 3 ɛ 2 ɛ a + 2 ɛ 3 ɛ b E 0 ( cos θ r ^ sin θ θ ^ )

Metrics