Abstract

We review the techniques used for fabrication of bulk sub-micrometer ferroelectric domain gratings in KTiOPO4 (KTP) and demonstrate that bulk Rb-doped KTiOPO4 (RKTP) is an excellent candidate for implementation of dense domain gratings. Compared to KTP, RKTP presents predominant domain propagation along the polar c-direction, substantially reduced lateral domain broadening, and higher poling yield. As a result we obtain homogeneous sub-µm periodic poling of RKTP with a period of 690 nm in 1 mm thick samples.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
    [CrossRef]
  2. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
    [CrossRef]
  3. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett.71(24), 3474–3476 (1997).
    [CrossRef]
  4. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.
  5. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9(3), 114–116 (1966).
    [CrossRef]
  6. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007).
    [CrossRef]
  7. G. D. Landry and T. A. Maldonado, “Efficient nonlinear phase shifts due to cascaded second-order processes in a counterpropagating quasi-phase-matched configuration,” Opt. Lett.22(18), 1400–1402 (1997).
    [CrossRef] [PubMed]
  8. G. D. Landry and T. A. Maldonado, “Switching and second harmonic generation using counterpropagating quasi-phase-matching in a mirrorless configuration,” J. Lightwave Technol.17(2), 316–327 (1999).
    [CrossRef]
  9. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
    [CrossRef]
  10. Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
    [CrossRef]
  11. J. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A72(2), 023810 (2005).
    [CrossRef]
  12. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011).
    [CrossRef]
  13. V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
    [CrossRef]
  14. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
    [CrossRef]
  15. Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
    [CrossRef]
  16. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
    [CrossRef]
  17. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
    [CrossRef]
  18. V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
    [CrossRef]
  19. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
    [CrossRef]
  20. C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
    [CrossRef]
  21. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
    [CrossRef]
  22. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
    [CrossRef]
  23. G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
    [CrossRef]
  24. G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
    [CrossRef]
  25. C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
    [CrossRef]
  26. A. Zukauskas, V. Pasiskevicius, F. Laurell, C. Canalias, M. Safinas, and A. Michailovas, “High-performance periodically poled Rb-doped KTP for frequency conversion in blue/green region,” in Europhoton2010, Europhysics Conference Abstract Volume 34C, ISBN 2–914771–64–9, Hamburg, Germany, 29 August – 3 September 2010, Paper No. FrA4.
  27. Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
    [CrossRef]
  28. S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
    [CrossRef]
  29. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
    [CrossRef]
  30. F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
    [CrossRef]

2011 (3)

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011).
[CrossRef]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
[CrossRef]

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

2009 (1)

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
[CrossRef]

2007 (3)

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007).
[CrossRef]

S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
[CrossRef]

2006 (2)

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

2005 (4)

J. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A72(2), 023810 (2005).
[CrossRef]

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

2003 (2)

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

2002 (3)

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

2000 (2)

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

1999 (1)

1998 (1)

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

1997 (2)

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

1966 (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9(3), 114–116 (1966).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Agronin, A.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

Angert, N.

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Apostolopoulos, V.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

Arie, A.

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

Baruchel, J.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Batchko, R. G.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Busacca, A. C.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

Byer, R. L.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Canalias, C.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007).
[CrossRef]

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

Chen, X.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
[CrossRef]

Cheng, B.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Chernykh, A. P.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Chuu, C.-S.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011).
[CrossRef]

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

De Natale, P.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

Dierolf, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Eason, R. W.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

Eger, D.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Eyres, L. A.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Ferraro, P.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

Fokine, M.

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

Fursov, D. V.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

Garb, K.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Gopalan, V.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
[CrossRef]

Grilli, S.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

Harris, S. E.

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011).
[CrossRef]

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9(3), 114–116 (1966).
[CrossRef]

Hirohashi, J.

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

Hutton, K. B.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

Ito, H.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Jiang, Q.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

Karlsson, H.

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett.71(24), 3474–3476 (1997).
[CrossRef]

Katz, M.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Keeble, D. S.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Khurgin, J.

J. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A72(2), 023810 (2005).
[CrossRef]

Kitamura, K.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Lafford, T. A.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Landry, G. D.

Laurell, F.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
[CrossRef]

S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
[CrossRef]

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett.71(24), 3474–3476 (1997).
[CrossRef]

Ma, B.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Mailis, S.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

Maldonado, T. A.

Masiello, F.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Molotskii, M.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Nakamura, K.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Nikolaeva, E. V.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Oron, M.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

Pasiskevicius, V.

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
[CrossRef]

S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007).
[CrossRef]

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

Pernot, P.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Qu, E.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Rosenman, G.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Rosenwaks, Y.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

Roth, M.

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Rumyantsev, E. L.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Scrymgeour, D. A.

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
[CrossRef]

Sheng, Y.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Shi, J.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
[CrossRef]

Shishkin, E. I.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Shur, V.

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

Shur, V. Y.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Skliar, A.

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

Skliar, S.

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Sones, C. L.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

Strömqvist, G.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Terabe, K.

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

Thilmann, N.

Thomas, P. A.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

Tiribilli, B.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

Tseitlin, M.

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Urenski, P.

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

Vassalli, M.

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
[CrossRef]

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

Wang, T.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Ward, R. C. C.

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Zhang, D.

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

Zhou, Z.

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
[CrossRef]

Zukauskas, A.

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express1(2), 201–206 (2011).
[CrossRef]

Annu. Rev. Mater. Res. (1)

V. Gopalan, V. Dierolf, and D. A. Scrymgeour, “Defect–domain wall interactions in trigonal ferroelectrics,” Annu. Rev. Mater. Res.37(1), 449–489 (2007).
[CrossRef]

Appl. Phys. B (1)

Z. Zhou, J. Shi, and X. Chen, “Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate,” Appl. Phys. B96(4), 787–791 (2009).
[CrossRef]

Appl. Phys. Lett. (14)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett.71(24), 3474–3476 (1997).
[CrossRef]

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett.9(3), 114–116 (1966).
[CrossRef]

Y. Sheng, T. Wang, B. Ma, E. Qu, B. Cheng, and D. Zhang, “Anisotropy of domain broadening in periodically poled lithium niobate crystals,” Appl. Phys. Lett.88(4), 041121 (2006).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett.81(26), 4946–4948 (2002).
[CrossRef]

G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, and M. Molotskii, “Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy,” Appl. Phys. Lett.82(1), 103–105 (2003).
[CrossRef]

V. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, “Nanoscale backswitched domain patterning in lithium niobate,” Appl. Phys. Lett.76(2), 143–145 (2000).
[CrossRef]

S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, and M. Vassalli, “Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching,” Appl. Phys. Lett.87(23), 233106 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Sub-micron periodically poled flux grown KTiOPO4,” Appl. Phys. Lett.82(24), 4233–4235 (2003).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett.86(18), 181105 (2005).
[CrossRef]

G. Rosenman, K. Garb, A. Skliar, M. Oron, D. Eger, and M. Katz, “Domain broadening in quasi-phase-matched nonlinear optical devices,” Appl. Phys. Lett.73(7), 865–867 (1998).
[CrossRef]

G. Rosenman, P. Urenski, A. Arie, M. Roth, N. Angert, S. Skliar, and M. Tseitlin, “Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry,” Appl. Phys. Lett.76(25), 3798–3800 (2000).
[CrossRef]

C. Canalias, S. Wang, V. Pasiskevicius, and F. Laurell, “Nucleation and growth of periodic domains during electric field poling in flux-grown KTiOPO4 observed by atomic force microscopy,” Appl. Phys. Lett.88(3), 032905 (2006).
[CrossRef]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001).
[CrossRef]

Ferroelectrics (1)

V. Y. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, “Domain shape in congurent and stoichiometric lithium tantalite,” Ferroelectrics269(1), 195–200 (2002).
[CrossRef]

J. Appl. Cryst. (1)

F. Masiello, T. A. Lafford, P. Pernot, J. Baruchel, D. S. Keeble, P. A. Thomas, A. Zukauskas, G. Strömqvist, F. Laurell, and C. Canalias, “Investigation by coherent X-ray section topography of ferroelectric domain behaviour as a function of temperature in periodically poled Rb:KTP,” J. Appl. Cryst.44(3), 462–466 (2011).
[CrossRef]

J. Appl. Phys. (2)

Q. Jiang, P. A. Thomas, K. B. Hutton, and R. C. C. Ward, “Rb-doped potassium titanyl phosphate for periodic ferroelectric domain inversion,” J. Appl. Phys.92(5), 2717–2723 (2002).
[CrossRef]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Polarization switching characteristics of flux grown KTiOPO4 and RbTiOPO4 at room temperature,” J. Appl. Phys.97(12), 124105 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics1(8), 459–462 (2007).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “High efficiency frequency converters with periodically poled Rb-doped KTiOPO4,” Opt. Mater.30(4), 594–599 (2007).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (2)

J. Khurgin, “Slowing and stopping photons using backward frequency conversion in quasi-phase-matched waveguides,” Phys. Rev. A72(2), 023810 (2005).
[CrossRef]

C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A83(6), 061803 (2011).
[CrossRef]

Other (2)

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 92.

A. Zukauskas, V. Pasiskevicius, F. Laurell, C. Canalias, M. Safinas, and A. Michailovas, “High-performance periodically poled Rb-doped KTP for frequency conversion in blue/green region,” in Europhoton2010, Europhysics Conference Abstract Volume 34C, ISBN 2–914771–64–9, Hamburg, Germany, 29 August – 3 September 2010, Paper No. FrA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM image showing the etched domain structure on the patterned face of a 1 mm-thick sample poled with Λ = 720 nm.

Fig. 2
Fig. 2

Topography of the etched domain structure on the patterned face of a KTP crystal with a domain period of 800 nm. The grating extends 0.4 mm in the c-direction.

Fig. 3
Fig. 3

Micrographs showing the ferroelectric domain structure after chemical etching on the former patterned (a) and non patterned (b) faces of the KTP crystal, and former patterned (c) and non patterned (d) faces of the RKTP crystal.

Fig. 4
Fig. 4

SEM images of the former patterned (a) and non patterned (b) faces of the RKTP crystal poled with a period of 690 nm.

Metrics