Abstract

Uv-blue up-conversion at 365, 407 and 436 nm is reported in Ho3+ activated Al (NO3)3-SiO2 sol-gel glass under 641nm excitation. Large intensity enhancement and spectral linewidth narrowing is observed for the 5G65I8 ﴾436 nm﴿ hypersensitive transition in up-conversion compared to its luminescence and is attributed to amplified spontaneous emission (ASE).The influence of linewidth narrowing on emission properties of the transition is quantitatively analyzed. Using theoretical rate equations in steady state the proposed energy transfer routes for populating higher emitting states in the up-conversion are verified.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Y. Chen, C. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang, “Ultraviolet-blue upconversion emissions of Ho3+ ions,” J. Opt. Soc. Am. B27(6), 1158–1164 (2010).
    [CrossRef]
  2. M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
    [CrossRef]
  3. R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
    [CrossRef]
  4. R. S. Meltzer, “Line broadening mechanisms and their measurement,” in Spectroscopic Properties of Some Rare-Earths in Optical Materials, G. Liu and B. Jacquier, eds. (Tsinghua University Press and Springer Verlag, 2005).
  5. M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
    [CrossRef]
  6. S. Hazarika and S. Rai, “Structural, optical and non-linear investigation of Eu3+ ions in sol-gel silicate glass,” Opt. Mater.27(2), 173–179 (2004).
    [CrossRef]
  7. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  8. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  9. F. Auzel, “Material for ionic solid-state lasers,” in Spectroscopy of Solid-State Laser-Type Material, B. D. Bartolo, ed. (Plenum, 1987), pp. 293.
  10. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
    [CrossRef]
  11. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
    [CrossRef]
  12. F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
    [CrossRef]
  13. M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
    [CrossRef]
  14. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
    [CrossRef]
  15. M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
    [CrossRef]
  16. M. Csele, Fundamentals of Light Sources and Lasers (Wiley-Interscience, 2004), Chaps. 4 and 5.
  17. N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
    [CrossRef]
  18. O. Svelto, Principles of Lasers (Plenum Publishing Corporation, Springer, 1998), Chap. 12.
  19. M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
    [CrossRef]

2011 (1)

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

2010 (2)

G. Y. Chen, C. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang, “Ultraviolet-blue upconversion emissions of Ho3+ ions,” J. Opt. Soc. Am. B27(6), 1158–1164 (2010).
[CrossRef]

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

2009 (2)

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
[CrossRef]

2004 (2)

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

S. Hazarika and S. Rai, “Structural, optical and non-linear investigation of Eu3+ ions in sol-gel silicate glass,” Opt. Mater.27(2), 173–179 (2004).
[CrossRef]

2001 (1)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

1987 (1)

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
[CrossRef]

1983 (1)

M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

1972 (1)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Aggarwal, I. D.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

Aghahadi, B.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Cao, W.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

Chen, G. Y.

Cheng, Z.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

Donlan, V. L.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Drexhage, M. G.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

Giri, N. R.

N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
[CrossRef]

Hazarika, S.

S. Hazarika and S. Rai, “Structural, optical and non-linear investigation of Eu3+ ions in sol-gel silicate glass,” Opt. Mater.27(2), 173–179 (2004).
[CrossRef]

Jacquier, B.

M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

Joubert, M. F.

M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kaczkan, M.

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

Klocek, G.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

Kowalska, M.

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

Li, L.

Liang, H. J.

Liu, Y.

Majchrowski, A.

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

Malinowski, M.

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

Matsinger, B. H.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Moncorgé, R.

M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Piramidowicz, R.

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

Qin, F.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Quimby, R. S.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
[CrossRef]

Rai, A.

N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
[CrossRef]

Rai, S.

S. Hazarika and S. Rai, “Structural, optical and non-linear investigation of Eu3+ ions in sol-gel silicate glass,” Opt. Mater.27(2), 173–179 (2004).
[CrossRef]

Rai, S. B.

N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

Ratnakaram, Y. C.

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

Sanghera, J. S.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

Seshadri, M.

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

Shaw, L. B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

Stopinski, S.

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

Surratt, G. T.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Suscavage, M. J.

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
[CrossRef]

Tayebi, P. S.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

Thirupathi Naidu, D.

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

Venkata Rao, K.

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

Weber, M. J.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

Yang, C. H.

Yu, Y.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Zhang, Z.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Zhang, Z. G.

Zheng, Y.

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

Electron. Lett. (1)

R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett.23(1), 32–34 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron.37(9), 1127–1137 (2001).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982).
[CrossRef]

J. Alloy. Comp. (2)

F. Qin, Y. Zheng, Y. Yu, Z. Cheng, P. S. Tayebi, W. Cao, and Z. Zhang, “Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser,” J. Alloy. Comp.509(4), 1115–1118 (2011).
[CrossRef]

M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultra-violet emission in Ho: ZBLAN fiber,” J. Alloy. Comp.380(1-2), 156–158 (2004).
[CrossRef]

J. Chem. Phys. (3)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys.49(10), 4412–4423 (1968).
[CrossRef]

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys.57(1), 562–567 (1972).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

J. Lumin. (1)

M. Malinowski, M. Kaczkan, S. Stopinski, R. Piramidowicz, and A. Majchrowski, “Short-wavelength luminescence in Ho3+-doped KGd(WO4)2 crystals,” J. Lumin.129(12), 1505–1508 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Mater. (2)

M. Seshadri, Y. C. Ratnakaram, D. Thirupathi Naidu, and K. Venkata Rao, “Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses,” Opt. Mater.32(4), 535–542 (2010).
[CrossRef]

S. Hazarika and S. Rai, “Structural, optical and non-linear investigation of Eu3+ ions in sol-gel silicate glass,” Opt. Mater.27(2), 173–179 (2004).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B (1)

M. F. Joubert, B. Jacquier, and R. Moncorgé, “Exciton-exciton annihilation and saturation effect in TbF3,” Phys. Rev. B28(7), 3725–3732 (1983).
[CrossRef]

Spectrochim. Acta [A] (1)

N. R. Giri, S. B. Rai, and A. Rai, “Intense green and red upconversion emissions from Ho3+ in presence of Yb3+ in Li:TeO2 glass,” Spectrochim. Acta [A]74(5), 1115–1119 (2009).
[CrossRef]

Other (4)

O. Svelto, Principles of Lasers (Plenum Publishing Corporation, Springer, 1998), Chap. 12.

F. Auzel, “Material for ionic solid-state lasers,” in Spectroscopy of Solid-State Laser-Type Material, B. D. Bartolo, ed. (Plenum, 1987), pp. 293.

R. S. Meltzer, “Line broadening mechanisms and their measurement,” in Spectroscopic Properties of Some Rare-Earths in Optical Materials, G. Liu and B. Jacquier, eds. (Tsinghua University Press and Springer Verlag, 2005).

M. Csele, Fundamentals of Light Sources and Lasers (Wiley-Interscience, 2004), Chaps. 4 and 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

UV- VIS absorption spectrum of Ho3+ in (AlNO3)3-SiO2 sol-gel glass.

Fig. 2
Fig. 2

(a) Up-conversion (b) Luminescence spectra of Ho3+ in (AlNO3)3-SiO2 sol-gel glass excited by(a) 641 nm and(b) 385 nm wavelength obtained with 400 W CW Xenon lamp.

Fig. 3
Fig. 3

Energy level scheme of Ho3+ and possible up-converted transitions routes of Ho3+ in (AlNO3)3-SiO2 sol-gel glass under 641 nm wavelength excitation.

Fig. 4
Fig. 4

Variation of (a) spectral quality (b) peak emission cross-section with peak emission wavelength in up-conversion and luminescence of Ho3+ transitions in (AlNO3)3-SiO2 sol-gel glas

Tables (2)

Tables Icon

Table 1 Absorption Transitions, Transition Frequency, Oscillator Strengths (fexp and fcal) and Judd-Ofelt Intensity Parameters (Ωλ) in Ho3+: Al (NO3)3-SiO2 Sol-Gel Glass

Tables Icon

Table 2 Peak Emission Wavelength (λP), Effective Bandwidth (Δλeff), Radiative Transition Probability (A), Quality Factor (Q) and Peak Emission Cross-Section (σ(λP)) of Observed Up-Conversion and Luminescence Transitions in Ho3+: Al (NO3)3-SiO2 Sol-Gel Glass

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

f c a l = 8 π 2 m c 3 h λ ( 2 J + 1 ) [ ( n 2 + 2 ) 2 / 9 n ] × λ = 2 , 4 , 6 Ω λ ( | ψ J U λ ψ J | ) 2 ,
Ω λ = 3 h 8 π 2 m c [ 9 n / ( n 2 + 2 ) 2 ] ( 2 J + 1 ) T λ .
f exp = 4.318 × 10 9 ε ( ν ) d ν ,
f e d = ν ( | ψ J U λ ψ J | ) 2 T λ .
A ( ψ J , ψ J ) = A e d + A m d ,
A e d = 64 π 4 e 2 n ( n 2 + 2 ) 2 3 h λ ¯ 3 ( 2 J + 1 ) 9 λ = 2 , 4 , 6 Ω λ | ψ J U λ ψ J | 2
A m d = 64 π 4 e 2 n 3 3 h λ ¯ 3 ( 2 J + 1 ) 4 m 2 c 2 | ψ J L + 2 S ψ J | 2
σ e m ( λ p ) = A ( ψ J , ψ J ) λ p 5 I ( λ p ) 8 π n 2 c λ p I ( λ p ) d λ ,
d N 1 d t = A 1 , 9 N 9 W 1 , 5 N 1 + A 6 , 1 N 6 + A 7 , 1 N 7 + A 2 , 1 N 2
d N 2 d t = A 3 , 2 N 3 W 2 , 7 N 2 A 2 , 1 N 2
d N 3 d t = A 4 , 3 N 4 W 3 , 8 N 3 A 3 , 2 N 3
d N 4 d t = A 5 , 4 N 5 A 4 , 3 N 4 W 4 , 10 N 4
d N 5 d t = W 1 , 5 N 1 A 5 , 4 N 5
d N 6 d t = A 7 , 6 N 7 A 6 , 1 N 6
d N 7 d t = W 2 , 7 N 2 + A 8 , 7 N 8 A 7 , 1 N 7 A 7 , 6 A 7
d N 8 d t = A 9 , 8 N 9 + W 3 , 8 N 3 A 8 , 7 N 8
d N 9 d t = A 10 , 9 N 10 A 9 , 1 N 9 A 9 , 8 N 9
d N 10 d t = W 4 , 10 N 4 A 10 , 9 N 10
I = h ν i , j A i , j N i ,
I ( H 3 6 I 5 8 ) = h ν 9 , 1 A 9 , 1 N 9
N 9 = A 10 , 9 N 10 ( A 9 , 1 + A 9 , 8 )
N 10 = W 4 , 10 N 4 A 10 , 9 and N 4 = A 5 , 4 N 5 ( W 4 , 10 + A 4 , 3 ) = W 1 , 5 N 1 ( W 4 , 10 + A 4 , 3 ) .
N 10 = W 4 , 10 W 1 , 5 N 1 A 10 , 9 ( W 4 , 10 + A 4 , 3 ) .
N 9 = W 4 , 10 W 1 , 5 N 1 ( A 9 , 1 + A 9 , 8 ) ( W 4 , 10 + A 4 , 3 ) .
I ( H 3 5 I 5 8 ) = h ν 9 , 1 A 9 , 1 W 4 , 10 W 1 , 5 N 1 ( A 9 , 1 + A 9 , 8 ) ( W 4 , 10 + A 4 , 3 ) .
I ( H 3 6 I 5 8 ) = h ν 9 , 1 A 9 , 1 B 4 , 10 B 1 , 5 ρ 2 N A ( A 9 , 1 + A 9 , 8 ) ( W 4 , 10 + A 4 , 3 ) .
I ( H 3 6 I 5 8 ) = h ν 9 , 1 A 9 , 1 B 4 , 10 B 1 , 5 ρ 2 N A ( A 9 , 1 + A 9 , 8 ) A 4 , 3 .
I ( G 5 6 I 5 8 ) = h ν 6 , 1 A 6 , 1 N 6 .
A 6 , 1 N 6 = A 7 , 6 N 7
N 7 = W 2 , 7 N 2 ( A 7 , 6 + A 7 , 1 )
N 2 = A 3 , 2 N 3 ( W 2 , 7 + A 2 , 1 ) = A 3 , 2 A 4 , 3 N 4 ( W 2 , 7 + A 2 , 1 ) ( ( W 3 , 8 + A 3 , 2 ) .
N 4 = A 5 , 4 N 5 ( W 4 , 10 + A 4 , 3 ) = W 1 , 5 N 1 ( W 4 , 10 + A 4 , 3 ) .
N 7 = A 3 , 2 A 4 , 3 W 2 , 7 W 1 , 5 N 1 ( A 7 , 6 + A 7 , 1 ) ( W 2 , 7 + A 2 , 1 ) ( W 3 , 8 + A 3 , 2 ) ( W 4 , 10 + A 4 , 3 ) .
Intensity I ( G 5 6 I 5 8 ) = h ν 6 , 1 A 7 , 6 A 3 , 2 A 4 , 3 W 2 , 7 W 1 , 5 N 1 ( A 7 , 6 + A 7 , 1 ) ( W 2 , 7 + A 2 , 1 ) ( W 3 , 8 + A 3 , 2 ) ( W 4 , 10 + A 4 , 3 ) .
I ( G 5 6 I 5 8 ) = h ν 6 , 1 A 7 , 6 B 2 , 7 B 1 , 5 ρ 2 N A ( A 7 , 6 + A 7 , 1 ) A 2 , 1 .
I ( ( G 5 , G 3 ) 5 I 5 8 ) = h ν 7 , 1 A 7 , 1 N 7
I ( ( G 5 , G 3 ) 5 I 5 8 ) = h ν 7 , 1 A 7 , 1 A 3 , 2 A 4 , 3 W 2 , 7 W 1 , 5 N 1 ( A 7 , 6 + A 7 , 1 ) ( W 2 , 7 + A 2 , 1 ) ( W 3 , 8 + A 3 , 2 ) ( W 4 , 10 + A 4 , 3 )
I ( ( G 5 , G 3 ) 5 I 5 8 ) = h ν 7 , 1 A 7 , 1 B 2 , 7 B 1 , 5 ρ 2 N A ( A 7 , 6 + A 7 , 1 ) A 2 , 1 .

Metrics