Abstract

In this article, we report the detailed spectroscopic studies of high Er3+content (50%) transparent YAG ceramic co-doped with nominal Cr3+ content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands are explored using standard experimental and theoretical methods and compared with YAG single crystal. Results show that although the non-radiative losses are high for 50% Er doped ceramic; several radiative spectral properties are almost in agreement with those for the single crystal YAG. Furthermore, because of the low dopant concentration of Cr3+, the sensitizing effect of Cr3+ was not observed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
    [CrossRef]
  2. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese Patent 10–101333 (1998).
  3. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
    [CrossRef]
  4. M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
    [CrossRef]
  5. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
    [CrossRef]
  6. J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
    [CrossRef]
  7. E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
    [CrossRef]
  8. V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
    [CrossRef]
  9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
    [CrossRef]
  10. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3AI5012,” J. Opt. Soc. Am. B7(8), 1456–1462 (1990).
    [CrossRef]
  11. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
    [CrossRef]
  12. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett.24(6), 385–387 (1999).
    [CrossRef] [PubMed]
  13. J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
    [CrossRef]
  14. J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
    [CrossRef]
  15. J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
    [CrossRef]
  16. G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
    [CrossRef]
  17. L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
    [CrossRef]
  18. D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
    [CrossRef]
  19. T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
    [CrossRef]
  20. T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
    [CrossRef]
  21. H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
    [CrossRef]
  22. Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964).
    [CrossRef]
  23. R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
    [CrossRef]
  24. H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
    [CrossRef]
  25. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
    [CrossRef] [PubMed]
  26. Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
    [CrossRef]
  27. H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
    [CrossRef]
  28. http://www.baikowski.com/
  29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
    [CrossRef]
  30. G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
    [CrossRef]
  31. A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, 1981).
  32. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
    [CrossRef]
  33. C. Wei, Doped Nanomaterials and Nanodevices, Photonics and Nanodevices (American Scientific Publishers, 2010).

2011

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

2010

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

2008

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
[CrossRef]

2007

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

2006

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

2005

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
[CrossRef]

2004

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

2002

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

2000

Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
[CrossRef]

1999

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett.24(6), 385–387 (1999).
[CrossRef] [PubMed]

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

1993

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

1991

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

1990

1989

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

1986

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

1964

Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

1953

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Allik, T. H.

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Bass, M.

Birnbaum, M.

Bisson, J.

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Boquillon, J.-P.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

Borowska, M.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

Cheah, K. W.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

Chen, D. W.

Chubb, D. L.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

Dai, Z.

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Dubinskii, M.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
[CrossRef]

Duczinski, E. W.

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

Duczynski, E. W.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

Duncan, R. C.

Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964).
[CrossRef]

Eichhorn, M.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

Feng, Y.

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Fields, R. A.

Fincher, C. L.

Fredrich-Thornton, S. T.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

Fujita, H.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Garbuzov, D.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
[CrossRef]

Georgescu, S.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Georgiou, E.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

Gross, R.

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

Gruber, J. B.

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Guo, J.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

Heumann, E.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

Hills, M. E.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Huang, T.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

Huber, G.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

Ikesue, A.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
[CrossRef]

Imasaki, K.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Izawa, Y.

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Jenkins, P. P.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

Jian, Z.

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Jiang, B.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Jiang, Z.

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Kaczkan, M.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

Kaminskii, A. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Kiriakidi, F.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

Kiss, Z. J.

Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964).
[CrossRef]

Kolodziejak, K.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

Kou, H.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

Kudryashov, I.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
[CrossRef]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Li, J.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Li, J. Q.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

Lidong, C.

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Liqiong, A.

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Liu, W.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Lu, J.

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Lukasiewicz, T.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
[CrossRef]

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Malinowski, M.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

Maria, A.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

Meng, J. X.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

Min, L.

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Morrison, C. A.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Motokoshi, S.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Murina, T. M.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Musset, O.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

Nakatsuka, M.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

Pal, T.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

Pan, Y.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Patton, M. O.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

Petermann, K.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

Prokhorov, A. M.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Qin, G.

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Quagliano, J. R.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Reid, M. F.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Richardson, F. S.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Rose, T. S.

Russell, C. C.

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

Saiki, T.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Sardar, D. K.

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

Seltzer, M. D.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Shen, Y.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

Shi, W. Q.

Shi, Y.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

Shi, Z. P.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

Shiwei, W.

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Stange, H.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

Stevens, S. B.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Struve, B.

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

Studenikin, M. I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Ueda, K.

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Ueda, K.-I.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Unnikrishnan, N. V.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

Ursu, I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Vernon, F. L.

Wang, L.

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

Wu, Z.

Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
[CrossRef]

Xu, H.

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

Yagi, H.

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Yamanaka, C.

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Yanagitani, T.

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Yoshida, H.

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

Yu, Y.

Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
[CrossRef]

Zhang, S.

Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
[CrossRef]

Zhang, W.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Zhekov, V. I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Zhou, J.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

Zhou, L.

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

Appl. Phys. B

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+: YAG at 300–550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B91(2), 249–256 (2008).
[CrossRef]

Appl. Phys. Lett.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, “Intense 1540 nm emission from Er doped Ce:YAG phosphor,” Appl. Phys. Lett.91(15), 151107 (2007).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, “Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser,” Appl. Phys. Lett.86(13), 131115 (2005).
[CrossRef]

Z. J. Kiss and R. C. Duncan, “Cross-pumped Cr3+/Nd3+ YAG laser crystal,” Appl. Phys. Lett.5(10), 200–202 (1964).
[CrossRef]

Appl. Phys., B Photophys. Laser Chem.

H. Stange, K. Petermann, G. Huber, and E. W. Duczynski, “Continuous wave 1.6 μm laser action in Er doped garnets at room temperature,” Appl. Phys., B Photophys. Laser Chem.49(3), 269–273 (1989).
[CrossRef]

Ceram. Int.

J. Zhou, W. Zhang, L. Wang, Y. Shen, J. Li, W. Liu, B. Jiang, H. Kou, Y. Shi, and Y. Pan, “Fabrication microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics,” Ceram. Int.37(1), 119–125 (2011).
[CrossRef]

J. Zhou, W. Zhang, T. Huang, L. Wang, J. Li, W. Liu, B. Jiang, Y. Pan, and J. Guo, “Optical properties of Er, Yb co-doped YAG transparent ceramics,” Ceram. Int.37(2), 513–519 (2011).
[CrossRef]

J. Zhou, W. Zhang, J. Li, B. Jiang, W. Liu, and Y. Pan, “Upconversion luminescence of high content Er-doped YAG transparent ceramics,” Ceram. Int.36(1), 193–197 (2010).
[CrossRef]

IEEE J. Quantum Electron.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron.40(6), 747–758 (2004).
[CrossRef]

J. Alloy. Comp.

Y. Yu, Z. Wu, and S. Zhang, “Concentration effects of Er3+ ion in YAG:Er laser crystal,” J. Alloy. Comp.302(1-2), 204–208 (2000).
[CrossRef]

J. Appl. Phys.

D. K. Sardar, C. C. Russell, J. B. Gruber, and T. H. Allik, “Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12,” J. Appl. Phys.97(12), 123501 (2005).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962).
[CrossRef]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

J. Eur. Ceram. Soc.

D. L. Chubb, A. Maria, T. Pal, M. O. Patton, and P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc.19(13-14), 2551–2562 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Colloq.

R. Gross, G. Huber, B. Struve, and E. W. Duczinski, “Cr3+-sensitization of the 3μm Er3+:YAG laser,” J. Phys. Colloq.1(7), C7.363–C7.366 (1991).
[CrossRef]

J. Rare Earths

L. Min, W. Shiwei, Z. Jian, A. Liqiong, and C. Lidong, “Preparation and upconversion luminescence of YAG:Er3+:Yb3+ transparent ceramics,” J. Rare Earths24(6), 732–735 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flash lamp-pumped Cr3+ and Nd3+ co-doped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.45(1A), 133–135 (2006).
[CrossRef]

T. Saiki, S. Motokoshi, K. Imasaki, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Nd/Cr:YAG ceramic rod laser pumped using arc-metal-halide-lamp,” Jpn. J. Appl. Phys.46(1), 156–160 (2007).
[CrossRef]

Opt. Commun.

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Opt. Eng.

E. Georgiou, F. Kiriakidi, O. Musset, and J.-P. Boquillon, “1.65-μm Er:Yb:YAG diode-pumped laser delivering 80-mJ pulse energy,” Opt. Eng.44(6), 064202–064212 (2005).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. Kaczkan, M. Borowska, K. Kolodziejak, T. Lukasiewicz, and M. Malinowski, “Intensity of optical transitions of Er3+ in Yb3Al5O12 crystal,” Opt. Mater.30(5), 703–706 (2008).
[CrossRef]

V. Lupei, A. Lupei, and A. Ikesue, “Transparent polycrystalline ceramic laser materials,” Opt. Mater.30(11), 1781–1786 (2008).
[CrossRef]

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B Condens. Matter

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B Condens. Matter48(21), 15561–15573 (1993).
[CrossRef] [PubMed]

Physica B

H. Xu, L. Zhou, Z. Dai, and Z. Jiang, “Decay properties of Er3+ ions in Er3+:YAG and Er:YAlO3,” Physica B324(1-4), 43–48 (2002).
[CrossRef]

Solid State Commun.

G. Qin, J. Lu, J. Bisson, Y. Feng, K. Ueda, H. Yagi, and T. Yanagitani, “Upconversion luminescence of Er3+ in highly transparent YAG ceramics,” Solid State Commun.132(2), 103–106 (2004).
[CrossRef]

Sov. J. Quantum Electron.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5012:Er 3+ crystals,” Sov. J. Quantum Electron.16(2), 274–276 (1986).
[CrossRef]

Other

T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese Patent 10–101333 (1998).

C. Wei, Doped Nanomaterials and Nanodevices, Photonics and Nanodevices (American Scientific Publishers, 2010).

http://www.baikowski.com/

A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

X-Ray diffraction pattern of the Er: Cr: YAG ceramic.

Fig. 2
Fig. 2

Fracture surface of transparent Er: Cr: YAG ceramics showing inner grains using SEM. Inset shows the photograph of mirror-polished Er: Cr: YAG ceramic.

Fig. 3
Fig. 3

Room temperature UV-VIS-NIR absorption spectrum of Cr3+/Er3+ co-doped YAG transparent ceramic.

Fig. 4
Fig. 4

Room temperature fluorescence spectra of the 4I13/24I15/2 transition of Er3+: YAG under 967 and 407 nm excitation.

Fig. 5
Fig. 5

Fluorescence spectrum of the ceramic under 407 nm excitation.

Fig. 6
Fig. 6

Upconversion spectrum of the ceramic under 967 nm excitation.

Fig. 7
Fig. 7

Energy level diagram of Cr, Er system showing the possible excitation and de-excitation mechanisms under 407 and 967 nm. TPA- Two photon absorption; ET Energy transfer. ESA-excited state absorption; CR Cross relaxation.

Fig. 8
Fig. 8

Dependence of upconversion intensity on pump power density under 967 nm excitation.

Fig. 9
Fig. 9

Decay profile of 1571 nm NIR emission under 967 nm excitation.

Fig. 10
Fig. 10

Decay profile of 557 nm and 680 nm visible emissions under 967 nm excitation.

Tables (3)

Tables Icon

Table 1 Measured and Calculated Absorption Line Strengths of Er3+in Cr3+:Er3+: YAG (Er = 50% and Cr = 0.1 mol %) Transparent Ceramic at Room Temperature

Tables Icon

Table 2 Calculated JO Parameters (Ωt, t = 2, 4, 6), Emission Cross-Sections (σe), Radiative/ Fluorescence Lifetime and Comparison with Single Crystal

Tables Icon

Table 3 Predicted Fluorescence Line Strengths (Scal), Radiative Decay Rates (Arad), and Branching Ratios (βJJ') of Cr3+: Er3+: YAG (Er = 50% and Cr = 0.1% mol %) Transparent Ceramic at 300 K

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=1+ S λ 2 λ 2 λ 0 2 ,
S meas (JJ')= 3hc(2J+1) 8 π 3 λ e 2 N 0 [ 9n ( n 2 +2) 2 ] α(λ)dλ .
S calc (JJ')= e 2 2,4,6 Ω t | (S,L)J U t (S',L')J' | 2 .
A rad = 64 π 4 3h(2J+1) λ 3 ( [ n ( n 2 +2) 2 9 ] S ed + n 3 S md ).
S md =( e 2 h 2 16 π 2 m 2 c 2 ) | (S,L)J L+2S (S',L')J' | 2 ,
τ r = 1 A(JJ') ,
β(JJ')= A(JJ') A(JJ')
σ(J,J':ν)= λ 2 β(j,J') 8πc n 2 τ r g(ν),
g(ν)= I(ν) I(ν)dν ,
1 τ f = A rad + W mp + W OH + W ET ,

Metrics