Abstract

The role of ablation and incubation processes in the formation of surface nanogratings with femtosecond pulses were investigated by measuring ablation thresholds and depth of nanogrooves at different pulse to pulse spacings. Our observations indicated that the nanograting formation essentially relies on a laser ablation process which can be modeled by a simple set of equations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
    [CrossRef]
  2. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B5, 648–659 (1988).
    [CrossRef]
  3. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
    [CrossRef]
  4. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
    [CrossRef]
  5. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
    [CrossRef]
  6. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
    [CrossRef]
  7. F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
    [CrossRef]
  8. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
    [CrossRef]
  9. F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
    [CrossRef]
  10. C. Phipps, Laser Ablation and Its Applications (Springer, 2006).
  11. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
    [CrossRef] [PubMed]
  12. X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
    [CrossRef]
  13. J. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982).
    [CrossRef] [PubMed]
  14. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
    [CrossRef]
  15. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer Science + Business Media, Inc., 2005).
    [CrossRef]

2010 (1)

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

2009 (3)

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

2006 (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

1999 (3)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

1997 (2)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

1988 (1)

1987 (1)

D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
[CrossRef]

1982 (1)

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Becker, M. F.

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B5, 648–659 (1988).
[CrossRef]

D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Bussiere, B.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Chin, S. L.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Coustillier, G.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Dai, Y.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
[CrossRef]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Giannuzzi, L. A.

L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer Science + Business Media, Inc., 2005).
[CrossRef]

Gingras, D.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

Guo, X.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Hang, Y.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Itina, T.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Jee, Y.

Kautek, W.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

Krüger, J.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

Leray, A.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Li, R.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Liang, F.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

Liu, J.

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
[CrossRef]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Lu, B.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
[CrossRef]

Phipps, C.

C. Phipps, Laser Ablation and Its Applications (Springer, 2006).

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Sanner, N.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Sardar, D. K.

D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
[CrossRef]

Sentis, M.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Stevie, F. A.

L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer Science + Business Media, Inc., 2005).
[CrossRef]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Sun, Q.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

Sun, X.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Utéza, O.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Vallée, R.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

Walser, R. M.

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B5, 648–659 (1988).
[CrossRef]

D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
[CrossRef]

Xu, Z.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Yu, B.

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

Appl. Phys. A (4)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A69, 465–466 (1999).
[CrossRef]

X. Guo, R. Li, Y. Hang, Z. Xu, B. Yu, Y. Dai, B. Lu, and X. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys. A94, 423–426 (2009).
[CrossRef]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys. A94, 889–897 (2009).
[CrossRef]

Appl. Phys. B (1)

F. Liang, Q. Sun, R. Vallée, and S. L. Chin, “Multiple refocusing characterization and critical power measurement using third harmonic generation at interface,” Appl. Phys. B99, 235–239 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96, 101903 (2010).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1707–1716 (1997).
[CrossRef]

J. Appl. Phys. (1)

D. K. Sardar, M. F. Becker, and R. M. Walser, “Multipulse laser damage of GaAs surfaces,” J. Appl. Phys.62, 3688–3693 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006).
[CrossRef] [PubMed]

Other (2)

C. Phipps, Laser Ablation and Its Applications (Springer, 2006).

L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams (Springer Science + Business Media, Inc., 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental Setup. The inset shows the third harmonic signal as a function of the translation distance along x-axis. The rising and falling edges correspond to the opening and closing of the electronic shutter. The gradually reduced third harmonic signal indicates the decrease of the laser intensity due to the displacement of the focal spot from the sample surface.

Fig. 2
Fig. 2

(a). Schematic drawing showing the threshold effect of nanograting formation. (b). The SEM pictures for nanograting formation at different pulse energies (90, 100, 110, 120 nJ/pulse) for a given pulse to pulse spacing 10 nm. K: laser propagation direction; S: scan direction; E: electric field

Fig. 3
Fig. 3

The overall extent of the nanogratings as a function of incident pulse energy for three different pulse to pulse spacings (5, 10 and 20 nm). Solid lines were fitted according to Eq. (2).

Fig. 4
Fig. 4

Nanogratings written at pulse energy 100 nJ at different pulse to pulse spacings. K: laser direction; E: electric field; S: scan direction. d: pulse to pulse spacing. (a). d = 100 nm, depth = 363 nm. (b). d = 80 nm, depth = 418 nm. (c). d = 40 nm, depth = 428 nm. (d). d = 20 nm, depth = 444 nm.

Fig. 5
Fig. 5

The incubation curve for nanograting formation. The ablation threshold drops dramatically and levels off at low and high effective pulse number (wz/d), respectively.

Tables (1)

Tables Icon

Table 1 Measured Beam Radii, Threshold Energies and the Computed Threshold Fluences for Different Pulse to Pulse Spacings

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F ( r , z ) = F 0 w 0 2 w z 2 exp ( 2 r 2 w z 2 )
E th = E in exp ( D 2 2 w z 2 )
F d = F 0 + ( F ss F 0 ) exp [ k ( w z / d 1 ) ] , d < w z
F d = F ss , d w z

Metrics