Abstract

Silver nanoparticles are generated in glass by a dry process. First silver ions are driven into the glass by electric field-assisted ion exchange. Subsequent annealing in air led to the formation of silver nanoparticles beneath the surface of the glass. A thin slice of the cross section of the sample was prepared. This visualization of the depth profile facilitated optical analysis of the embedded layer containing silver nanoparticles to be preformed. We observed that there were narrower plasmon bands close to the sample surface and wider plasmon bands in lower layers. It is attributed to the formation of larger nanoparticles with lower number density close to the surface and slightly smaller nanoparticles with higher number density in the depth of the sample.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, 1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  4. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
    [CrossRef] [PubMed]
  5. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  6. P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]
  7. F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000), pp. 81 ff.
  8. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
    [CrossRef]
  9. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
    [CrossRef]
  10. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
    [CrossRef]
  11. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009).
    [CrossRef] [PubMed]
  12. C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
    [CrossRef]
  13. S. I. Najafi, Introduction to Glass Integrated Optics (The Artech House Optoelectronics Library, 1992).
  14. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
    [CrossRef]
  15. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
    [CrossRef]
  16. A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surface produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
    [CrossRef]
  17. N. Valles-Villarreal, A. Villalobos, and H. Márquez, “Stress in copper ion-exchanged glass waveguides,” J. Lightwave Technol.17(4), 606–612 (1999).
    [CrossRef]
  18. H. Márquez, D. Salazar, A. Villalobos, G. Paez, and J. M. Rincón, “Experimental study of Cu+–Na+ exchanged glass waveguides,” Appl. Opt.34(25), 5817–5822 (1995).
    [CrossRef] [PubMed]
  19. R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
    [CrossRef]
  20. F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
    [CrossRef]
  21. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-164 .
    [CrossRef]
  22. Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
    [CrossRef]
  23. J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
    [CrossRef]
  24. A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
    [CrossRef]
  25. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994).
    [CrossRef]
  26. D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
    [CrossRef]
  27. E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
    [CrossRef]
  28. N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
    [CrossRef]
  29. R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
    [CrossRef]
  30. U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988).
    [CrossRef]
  31. F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
    [CrossRef]
  32. R. Araujo, “Colorless glasses containing ion-exchanged silver,” Appl. Opt.31(25), 5221–5224 (1992).
    [CrossRef] [PubMed]
  33. E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
    [CrossRef]
  34. Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
    [CrossRef]
  35. A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
    [CrossRef]
  36. A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
    [CrossRef]

2011 (2)

Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-164 .
[CrossRef]

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

2010 (3)

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

2009 (2)

2008 (2)

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

2007 (1)

A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
[CrossRef]

2006 (1)

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

2005 (3)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

2004 (2)

R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
[CrossRef]

A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
[CrossRef]

2003 (3)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

1999 (2)

N. Valles-Villarreal, A. Villalobos, and H. Márquez, “Stress in copper ion-exchanged glass waveguides,” J. Lightwave Technol.17(4), 606–612 (1999).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

1995 (2)

H. Márquez, D. Salazar, A. Villalobos, G. Paez, and J. M. Rincón, “Experimental study of Cu+–Na+ exchanged glass waveguides,” Appl. Opt.34(25), 5817–5822 (1995).
[CrossRef] [PubMed]

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

1994 (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994).
[CrossRef]

1992 (2)

R. Araujo, “Colorless glasses containing ion-exchanged silver,” Appl. Opt.31(25), 5221–5224 (1992).
[CrossRef] [PubMed]

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surface produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

1991 (2)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
[CrossRef]

N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
[CrossRef]

1988 (2)

U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988).
[CrossRef]

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Abdolvand, A.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Ahmed, A. A.

N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
[CrossRef]

Araujo, R.

Araújo, V. D.

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
[CrossRef]

Battaglin, G.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Beresna, M.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Berg, K.-J.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
[CrossRef]

Berger, A.

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surface produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
[CrossRef]

Bernstorff, S.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Bian, Q.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Borsella, E.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Canton, P.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

Cao, Y. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Cattaruzza, E.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Chen, Y.

Condrate, R. A.

N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
[CrossRef]

Corbari, C.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

D'Acapito, F.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

Davies, P. A.

R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
[CrossRef]

De Marchi, G.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Ding, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Dubcek, P.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Escanhoela, C. A.

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Feng, Z.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Gonella, F.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Gösele, U.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Gracin, D.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Graener, H.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009).
[CrossRef] [PubMed]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Hao, E.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Hofmeister, H.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
[CrossRef]

Honkanen, S.

Jakšic, M.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Janicki, V.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Jin, R.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Juraic, K.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Kadono, K.

A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
[CrossRef]

Kapila, D.

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

Karlušic, M.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Karvonen, L.

Kazansky, P. G.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kothari, D. C.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Kreibig, U.

A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
[CrossRef]

Krieger, U.

U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988).
[CrossRef]

Lanford, W.

U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Li, D. W.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lin, J.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Liu, F.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Ma, Y.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Márquez, H.

Mattei, G.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Matthias, S.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Maurizio, C.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

Mazzoldi, P.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Meljanac, D.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Métraux, G. S.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Oven, R.

R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
[CrossRef]

Padovani, S.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

Paez, G.

Pan, A.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Pinchuk, A.

A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
[CrossRef]

Plawsky, J. L.

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Plessen, G. V.

A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
[CrossRef]

Podlipensky, A.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Polloni, R.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Qin, S.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Quaranta, A.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Rincón, J. M.

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994).
[CrossRef]

Sada, C.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

Salazar, D.

Sancho-Parramon, J.

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Säynätjoki, A.

Schatz, G. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Seifert, G.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt.48(25), F37–F44 (2009).
[CrossRef] [PubMed]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Sharaf, N. A.

N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
[CrossRef]

Skrzypczak, U.

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Stalmashonak, A.

Su, X.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Suetsugu, T.

A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
[CrossRef]

Syrowatka, F.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Tervonen, A.

Tewari, R.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Unal, A. A.

Valles-Villarreal, N.

Varma, R. S.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Villalobos, A.

Vomiero, A.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wei, H.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Wei, H. Y.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Yang, Z.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Ye, C.

Yin, M.

R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
[CrossRef]

Zhang, A. Y.

A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zheng, H.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Zhou, N.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Zhu, L. F.

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

Zhu, Y.

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Ziemath, E. C.

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.)17(24), 2983–2987 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal doped nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Y. Ma, J. Lin, L. F. Zhu, H. Y. Wei, D. W. Li, and S. Qin, “Optical properties of Ag nanoparticle embedded silicate glass prepared by field-assisted diffusion,” Appl. Phys., A Mater. Sci. Process.102(3), 521–525 (2011).
[CrossRef]

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D'Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys., A Mater. Sci. Process.81(5), 1065–1071 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, and Z. Ding, “Changeable position of SPR peak of Ag nanoparticles embedded in mesoporous SiO2 glass by annealing treatment,” Appl. Surf. Sci.205(1-4), 323–328 (2003).
[CrossRef]

Chem. Eng. Sci. (1)

D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995).
[CrossRef]

J. Appl. Phys. (1)

E. C. Ziemath, V. D. Araújo, and C. A. Escanhoela., “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys.104(5), 054912 (2008).
[CrossRef]

J. Lightwave Technol. (2)

N. Valles-Villarreal, A. Villalobos, and H. Márquez, “Stress in copper ion-exchanged glass waveguides,” J. Lightwave Technol.17(4), 606–612 (1999).
[CrossRef]

R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

J. Non-Cryst. Solids (5)

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surface produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

A. Y. Zhang, T. Suetsugu, and K. Kadono, “Incorporation of silver into soda-lime silicate glass by a classical staining process,” J. Non-Cryst. Solids353(1), 44–50 (2007).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

U. Krieger and W. Lanford, “Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental,” J. Non-Cryst. Solids102(1-3), 50–61 (1988).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (2)

R. Oven, M. Yin, and P. A. Davies, “Characterization of planar optical waveguides formed by copper–sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys.37(16), 2207–2215 (2004).
[CrossRef]

A. Pinchuk, G. V. Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” J. Phys. D Appl. Phys.37(22), 3133–3139 (2004).
[CrossRef]

Mater. Lett. (1)

N. A. Sharaf, R. A. Condrate, and A. A. Ahmed, “FTIR spectral/structural investigation of the ion exchange/thermal treatment of silver ions into a silicate glass,” Mater. Lett.11(3-4), 115–118 (1991).
[CrossRef]

Mater. Sci. Eng. C (1)

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silicate glasses,” Mater. Sci. Eng. C26(5-7), 1087–1091 (2006).
[CrossRef]

Nature (2)

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun.110(5-6), 611–614 (1994).
[CrossRef]

Opt. Mater. (1)

J. Sancho-Parramon, V. Janicki, P. Dubček, M. Karlušić, D. Gracin, M. Jakšić, S. Bernstorff, D. Meljanac, and K. Juraic, “Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution,” Opt. Mater.32(4), 510–514 (2010).
[CrossRef]

Opt. Mater. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Solid State Sci. (1)

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Z. Phys. D At. Mol. Clust. (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass surface layers produced by sodium-silver ion exchange—their concentration and size depth profile,” Z. Phys. D At. Mol. Clust.20(1-4), 309–311 (1991).
[CrossRef]

Other (4)

S. I. Najafi, Introduction to Glass Integrated Optics (The Artech House Optoelectronics Library, 1992).

F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000), pp. 81 ff.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The field-assisted ion diffusion was conducted in a furnace between two electrodes. (b) The current flow was monitored. The current starts at about 420 μA/cm2, and approaches 600 μA/cm2 over the course of the ion exchange.

Fig. 2
Fig. 2

(a) Absorbance of the original glass (blue dashed line), the silver ion-exchanged glass (black dotted line) and the annealed sample containing silver nanoparticles (red solid line). There is a strong plasmon band around 410nm, which is mostly cut off due to the large absorbance. (b) Image of the annealed sample (the sample had to be cut for making a thin slice).

Fig. 3
Fig. 3

A thin slice was prepared showing the cross-section of the particle-containing layer. Microscope image of the whole thin slice, distributed over 4 lines, with the former surface of the glass at the top of each line. The black bar has a length of 1mm, the thickness of the particle- containing layer is ~230μm.

Fig. 4
Fig. 4

Absorbance spectra from different depths of the thin slice.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2( Si O A g + )SiOSi+ O 1 + (A g 2 ) 1+
2 O 1 +2A g 1+ 2A g 0 + O 2 .
A g + +A g + A g 2+ +A g 0 .

Metrics