Abstract

In this paper we report the experimental confirmation of the fluorescence enhancement effect using a one-dimensional photonic band gap (1D PBG) structure. This 1D PBG structure consists of periodic multilayer thin films with gallium phosphide (GaP) and silicon dioxide (SiO2) as the alternating high and low index materials. Strong evanescent field enhancement can be generated at the last interface due to the combination of total internal reflection and photonic crystal resonance for the excitation wavelength. In addition, the 1D PBG structure is designed as an omnidirectional reflector for the red-shifted fluorescent signal emitted from the surface bounded molecules. This omnidirectional reflection function helps to improve the collection efficiency of the objective lens and further increase the detected fluorescent signal. Compared with the commonly used bare glass substrate, an average enhancement factor of 69 times has been experimentally verified with quantum dots as the fluorescent markers. This fluorescence enhancer may find broad applications in single molecular optical sensing and imaging.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
    [CrossRef] [PubMed]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001).
    [CrossRef] [PubMed]
  4. C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
    [CrossRef]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  6. Y. Liu, S. Wang, Y. S. Park, X. Yin, and X. Zhang, “Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity,” Opt. Express18(24), 25029–25034 (2010).
    [CrossRef] [PubMed]
  7. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
    [CrossRef] [PubMed]
  8. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18(4), 3693–3699 (2010).
    [CrossRef] [PubMed]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  10. J. Enderlein, “Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis,” Chem. Phys. Lett.308(3-4), 263–266 (1999).
    [CrossRef]
  11. L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt.39(22), 3968–3977 (2000).
    [CrossRef] [PubMed]
  12. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
    [CrossRef]
  13. Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
    [CrossRef]
  14. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt.38(4), 724–732 (1999).
    [CrossRef] [PubMed]
  15. A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
    [CrossRef] [PubMed]
  16. J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett.33(15), 1729–1731 (2008).
    [CrossRef] [PubMed]
  17. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
    [CrossRef]
  18. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
    [CrossRef] [PubMed]
  19. R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003).
    [CrossRef]
  20. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  21. J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
    [CrossRef]
  22. J. W. Haus and A. Lakhtakia, The Handbook of Nanotechnology (SPIE Press, 2004), Chap. 3.

2011 (1)

J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
[CrossRef]

2010 (4)

2009 (2)

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

2008 (1)

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

2005 (1)

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

2004 (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

2003 (1)

R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (2)

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt.38(4), 724–732 (1999).
[CrossRef] [PubMed]

J. Enderlein, “Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis,” Chem. Phys. Lett.308(3-4), 263–266 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Bouchoule, S.

Brunstein, M.

Chaudhery, V.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Cunningham, B. T.

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Descrovi, E.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

Digman, M. A.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Ebbesen, T. W.

Enderlein, J.

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt.38(4), 724–732 (1999).
[CrossRef] [PubMed]

J. Enderlein, “Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis,” Chem. Phys. Lett.308(3-4), 263–266 (1999).
[CrossRef]

Estrada, L. C.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Fedyanin, A. A.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Fu, C. C.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Gao, J.

J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
[CrossRef]

Giorgis, F.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

Goldberg, B. B.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Gopinathan, A.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Gratton, E.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Hamrle, J.

Haus, J. W.

R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003).
[CrossRef]

Huang, C. S.

Ippolito, S. B.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Ishikawa, M.

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Khine, M.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Lee, L. P.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Le-Gratiet, L.

Levenson, J. A.

Lezec, H. J.

Linke, R. A.

Liu, Y.

Liu, Z.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Long, M.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Lu, M.

MacCraith, B. D.

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Martinez, O. E.

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Mirin, R.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Monnier, P.

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nelson, R. L.

R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003).
[CrossRef]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Ossato, G.

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Park, Y. S.

Pellerin, K. M.

Pokhriyal, A.

Polerecký, L.

Ruckstuhl, T.

Sagnes, I.

Sarangan, A. M.

J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
[CrossRef]

Schulz, S.

Seeger, S.

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Soboleva, I. V.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

Summonte, C.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

Talneau, A.

Thio, T.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Ünlü, M. S.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Vamivakas, A. N.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Wang, S.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yacomotti, A. M.

Ye, J. Y.

Yin, X.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zhan, Q.

J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
[CrossRef]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Zhang, X.

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett.94(23), 231122 (2009).
[CrossRef]

R. L. Nelson and J. W. Haus, “One-dimensional photonic crystals in reflection geometry for optical applications,” Appl. Phys. Lett.83(6), 1089–1091 (2003).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett.87(7), 071905 (2005).
[CrossRef]

C. C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, “Bimetallic nanopetals for thousand-fold fluorescence enhancements,” Appl. Phys. Lett.97(20), 203101 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

J. Enderlein, “Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis,” Chem. Phys. Lett.308(3-4), 263–266 (1999).
[CrossRef]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nature (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Thin Solid Films (1)

J. Gao, Q. Zhan, and A. M. Sarangan, “High-index low-loss gallium phosphide thin films fabricated by radio frequency magnetron sputtering,” Thin Solid Films519(16), 5424–5428 (2011).
[CrossRef]

Other (1)

J. W. Haus and A. Lakhtakia, The Handbook of Nanotechnology (SPIE Press, 2004), Chap. 3.

Supplementary Material (1)

» Media 1: MOV (1860 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Illustration of a reflective fluorescence microscope; (b) Proposed fluorescence enhancer setup with multilayer 1D PBG coatings on the surface of the glass substrate.

Fig. 2
Fig. 2

(a) Illustration of the electro-magnetic waves with different polarizations incident on a 3-period 1D PBG structure; n1, n2 and h1, h2 are the corresponding refractive indices and film thicknesses for the repeating layers; (b) Projected band diagram of infinite period 1D PBG with n1 = 3.23, n2 = 1.45, n0 = 1.0 and h1/h2 = n2/n1; a = h1 + h2 is the period of the bi-layer thin films. The green zone is propagating band and the blue zone is stop band. The minus sign for lateral wave-vector is for TM wave. The two red lines are corresponding to the light lines ω=c k y / n 0 for TE and TM wave respectively.

Fig. 3
Fig. 3

Calculated reflectance of a 3-period 1D PBG design for (a) TE & (b) TM waves at 0°, 20°, 40°, 60°, 80° and 89° incident angles as a function of wavelength; Collection efficiency as a function of distance between the dipole molecules and the top surface of 1D PBG structure for (c) TE excitation with 3-period 1D PBG structure; (d) Bare glass substrate.

Fig. 4
Fig. 4

Electric field of the excitation light on top surface of the 3-period 1D PBG structure for both (a) TE and (b) TM waves as a function of the incident angle within the substrate; Electric field of the excitation light as a function of propagating distance for (c) TE and (d) TM waves.

Fig. 5
Fig. 5

Electric field of the excitation light on top surface of the 3.5-period (an extra layer of 55 nm GaP) 1D PBG structure for both TE (top) and TM (bottom) waves as a function of the incident angle within the substrate.

Fig. 6
Fig. 6

(a) Transmission spectrum of the fabricated 3-period 1D PBG sample compared with calculated spectrum based on ellipsometry measurements; (b) Result of omni-directional reflection test using a HeNe laser incident on the top surface of the 1D PBG sample.

Fig. 7
Fig. 7

Experimental setup of fluorescence enhancement test of 1D PBG structure.

Fig. 8
Fig. 8

Fluorescence images capture by the CCD camera for (a) 1D PBG sample with TE enhancement; (b) bare glass substrate with TE excitation at the same incident angle; (c) 1D PBG sample with TM enhancement; (d) bare glass substrate with TM excitation at the same incident angle (Media 1).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E K ( y,z )= E K ( z ) e iKz e i k y y .
a= ω u + ω l 2 λ em =177nm.
h 1 = n 2 n 1 + n 2 a=55nm h 2 = n 1 n 1 + n 2 a=122nm.
CEF= 0 θ N.A. dθsinθ( d 2 S d Ω 2 ) 0 π dθsinθ( d 2 S d Ω 2 ) .

Metrics