Abstract

Photoinduced anisotropy in nano-dimensional (ND) thin films (<50nm thick) of chalcogenide glasses is observed for the first time. Results of photoinduced dichroism and photodarkening effect in 10, 20, 50 and 100 nm glassy As2S3 films are presented and compared with photoinduced phenomena in thick films (>1µm). ND As2S3 films are shown to function also as efficient photoresists. Preliminary model based on two exponential rate processes involving defects generation and stabilization is proposed explaining the main features of the photoinduced phenomena. These observations widen the range of applications of chalcogenide glassy films such as for higher capacity of optical data storage and for the photoalignment of liquid crystals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Frumar, B. Frumarova, T. Wagner, and P. Nêmec, “Photoinduced phenomena in amorphous and glassy chalcogenides,” in Photoinduced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH, 2003), p. 23.
  2. V. M. Lyubin and M. L. Klebanov, “Photo-induced anisotropy in chalcogenide glassy semiconductors,” in Photoinduced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH, 2003), p. 91.
  3. N. Terakado and K. Tanaka, “Does the charged defect exists in nano-structured oxy-chalcogenide glass?” Appl. Phys. Express 1, 081501 (2008).
    [CrossRef]
  4. V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
    [CrossRef]
  5. H. Fritzsche, “Critical discussion of models proposed to explain photo-induced anisotropies in chalcogenide glasses,” Phys. Status Solidi B 246(8), 1768–1772 (2009).
    [CrossRef]
  6. K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
    [CrossRef]
  7. E. Vateva and D. Arsova, “Transition of reversible photodarkening to photobleaching in chalcogenide films,” Europhys. Lett. 89(6), 64004 (2010).
    [CrossRef]
  8. V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
    [CrossRef]
  9. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [CrossRef]
  10. V. Lyubin, “Chalcogenide glassy photoresists: history of development, properties and applications,” Phys. Status Solidi B 246(8), 1758–1767 (2009).
    [CrossRef]
  11. K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
    [CrossRef]
  12. K. Hayashi and N. Mitsuishi, “Thickness effect of the photodarkening in amorphous chalcogenide films,” J. Non-Cryst. Solids 299–302, 949–952 (2002).
    [CrossRef]
  13. H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
    [CrossRef]
  14. I. Z. Indutnyi and P. E. Shepeljavi, “Reversible photodarkening in As2Se3 nanolayers,” J. Non-Cryst. Solids 227–230, 700–704 (1998).
    [CrossRef]
  15. K. Tanaka, “Nanostructured chalcogenide glasses,” J. Non-Cryst. Solids 326–327, 21–28 (2003).
    [CrossRef]
  16. Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
    [CrossRef]
  17. M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
    [CrossRef]
  18. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  19. V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
    [CrossRef]
  20. V. M. Lyubin and V. K. Tikhomirov, “Photoinduced dichroism in films of chalcogenide glassy semiconductors,” Sov. Phys. Solid State 32, 1069–1074 (1990).
  21. V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B Condens. Matter 51(8), 5538–5541 (1995).
    [CrossRef] [PubMed]
  22. H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
    [CrossRef] [PubMed]
  23. I. Abdulhalim and R. Beserman, “Raman scattering study of light induced structural transformations in glassy As2Se3,” Solid State Commun. 64(6), 951–955 (1987).
    [CrossRef]
  24. I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
    [CrossRef] [PubMed]
  25. I. Abdulhalim, “Model for photoinduced defects and photorefractivity in optical fibers,” Appl. Phys. Lett. 66(24), 3248–3250 (1995).
    [CrossRef]

2011 (3)

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

2010 (1)

E. Vateva and D. Arsova, “Transition of reversible photodarkening to photobleaching in chalcogenide films,” Europhys. Lett. 89(6), 64004 (2010).
[CrossRef]

2009 (4)

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

V. Lyubin, “Chalcogenide glassy photoresists: history of development, properties and applications,” Phys. Status Solidi B 246(8), 1758–1767 (2009).
[CrossRef]

H. Fritzsche, “Critical discussion of models proposed to explain photo-induced anisotropies in chalcogenide glasses,” Phys. Status Solidi B 246(8), 1768–1772 (2009).
[CrossRef]

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

2008 (3)

N. Terakado and K. Tanaka, “Does the charged defect exists in nano-structured oxy-chalcogenide glass?” Appl. Phys. Express 1, 081501 (2008).
[CrossRef]

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

2003 (1)

K. Tanaka, “Nanostructured chalcogenide glasses,” J. Non-Cryst. Solids 326–327, 21–28 (2003).
[CrossRef]

2002 (1)

K. Hayashi and N. Mitsuishi, “Thickness effect of the photodarkening in amorphous chalcogenide films,” J. Non-Cryst. Solids 299–302, 949–952 (2002).
[CrossRef]

1998 (1)

I. Z. Indutnyi and P. E. Shepeljavi, “Reversible photodarkening in As2Se3 nanolayers,” J. Non-Cryst. Solids 227–230, 700–704 (1998).
[CrossRef]

1995 (3)

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B Condens. Matter 51(8), 5538–5541 (1995).
[CrossRef] [PubMed]

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[CrossRef] [PubMed]

I. Abdulhalim, “Model for photoinduced defects and photorefractivity in optical fibers,” Appl. Phys. Lett. 66(24), 3248–3250 (1995).
[CrossRef]

1990 (1)

V. M. Lyubin and V. K. Tikhomirov, “Photoinduced dichroism in films of chalcogenide glassy semiconductors,” Sov. Phys. Solid State 32, 1069–1074 (1990).

1989 (1)

I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
[CrossRef] [PubMed]

1987 (2)

I. Abdulhalim and R. Beserman, “Raman scattering study of light induced structural transformations in glassy As2Se3,” Solid State Commun. 64(6), 951–955 (1987).
[CrossRef]

H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
[CrossRef]

1984 (1)

K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
[CrossRef]

Abdulhalim, I.

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

I. Abdulhalim, “Model for photoinduced defects and photorefractivity in optical fibers,” Appl. Phys. Lett. 66(24), 3248–3250 (1995).
[CrossRef]

I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
[CrossRef] [PubMed]

I. Abdulhalim and R. Beserman, “Raman scattering study of light induced structural transformations in glassy As2Se3,” Solid State Commun. 64(6), 951–955 (1987).
[CrossRef]

Antoine, K.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Arsh, A.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Arsova, D.

E. Vateva and D. Arsova, “Transition of reversible photodarkening to photobleaching in chalcogenide films,” Europhys. Lett. 89(6), 64004 (2010).
[CrossRef]

Beserman, R.

I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
[CrossRef] [PubMed]

I. Abdulhalim and R. Beserman, “Raman scattering study of light induced structural transformations in glassy As2Se3,” Solid State Commun. 64(6), 951–955 (1987).
[CrossRef]

Bruner, A.

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

Drabold, D. A.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Dror, R.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Eguchi, H.

H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
[CrossRef]

Eisenberg, N.

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Eisenberg, N. P.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Elliott, S. R.

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B Condens. Matter 51(8), 5538–5541 (1995).
[CrossRef] [PubMed]

Fritzsche, H.

H. Fritzsche, “Critical discussion of models proposed to explain photo-induced anisotropies in chalcogenide glasses,” Phys. Status Solidi B 246(8), 1768–1772 (2009).
[CrossRef]

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[CrossRef] [PubMed]

Gelbaor, M.

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

Hayashi, K.

K. Hayashi and N. Mitsuishi, “Thickness effect of the photodarkening in amorphous chalcogenide films,” J. Non-Cryst. Solids 299–302, 949–952 (2002).
[CrossRef]

Hirai, M.

H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
[CrossRef]

Indutnyi, I. Z.

I. Z. Indutnyi and P. E. Shepeljavi, “Reversible photodarkening in As2Se3 nanolayers,” J. Non-Cryst. Solids 227–230, 700–704 (1998).
[CrossRef]

Jain, H.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Klebanov, M.

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

Kurioz, Y.

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Kyohya, S.

K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
[CrossRef]

Latyshev, A. V.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Lyubin, V.

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

V. Lyubin, “Chalcogenide glassy photoresists: history of development, properties and applications,” Phys. Status Solidi B 246(8), 1758–1767 (2009).
[CrossRef]

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Lyubin, V. M.

V. M. Lyubin and V. K. Tikhomirov, “Photoinduced dichroism in films of chalcogenide glassy semiconductors,” Sov. Phys. Solid State 32, 1069–1074 (1990).

Manevich, M.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Mitsuishi, N.

K. Hayashi and N. Mitsuishi, “Thickness effect of the photodarkening in amorphous chalcogenide films,” J. Non-Cryst. Solids 299–302, 949–952 (2002).
[CrossRef]

Nasimov, D. A.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Odajima, A.

K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
[CrossRef]

Reznikov, Y.

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Senanayake, S. D.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Sfez, B.

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

Shepeljavi, P. E.

I. Z. Indutnyi and P. E. Shepeljavi, “Reversible photodarkening in As2Se3 nanolayers,” J. Non-Cryst. Solids 227–230, 700–704 (1998).
[CrossRef]

Shitrit, N.

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

Suzuki, Y.

H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
[CrossRef]

Tanaka, K.

N. Terakado and K. Tanaka, “Does the charged defect exists in nano-structured oxy-chalcogenide glass?” Appl. Phys. Express 1, 081501 (2008).
[CrossRef]

K. Tanaka, “Nanostructured chalcogenide glasses,” J. Non-Cryst. Solids 326–327, 21–28 (2003).
[CrossRef]

K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
[CrossRef]

Terakado, N.

N. Terakado and K. Tanaka, “Does the charged defect exists in nano-structured oxy-chalcogenide glass?” Appl. Phys. Express 1, 081501 (2008).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B Condens. Matter 51(8), 5538–5541 (1995).
[CrossRef] [PubMed]

V. M. Lyubin and V. K. Tikhomirov, “Photoinduced dichroism in films of chalcogenide glassy semiconductors,” Sov. Phys. Solid State 32, 1069–1074 (1990).

Varshal, J.

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Vateva, E.

E. Vateva and D. Arsova, “Transition of reversible photodarkening to photobleaching in chalcogenide films,” Europhys. Lett. 89(6), 64004 (2010).
[CrossRef]

Vlcek, M.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Weil, R.

I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

N. Terakado and K. Tanaka, “Does the charged defect exists in nano-structured oxy-chalcogenide glass?” Appl. Phys. Express 1, 081501 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

M. Gelbaor, M. Klebanov, V. Lyubin, and I. Abdulhalim, “Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films,” Appl. Phys. Lett. 98(7), 071909 (2011).
[CrossRef]

I. Abdulhalim, “Model for photoinduced defects and photorefractivity in optical fibers,” Appl. Phys. Lett. 66(24), 3248–3250 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

V. Lyubin, A. Arsh, M. Klebanov, M. Manevich, J. Varshal, R. Dror, B. Sfez, A. V. Latyshev, D. A. Nasimov, and N. P. Eisenberg, “Non-linear dissolution of amorphous arsenic sulfide-selenide photoresist films,” Appl. Phys., A Mater. Sci. Process. 97(1), 109–114 (2009).
[CrossRef]

Europhys. Lett. (1)

E. Vateva and D. Arsova, “Transition of reversible photodarkening to photobleaching in chalcogenide films,” Europhys. Lett. 89(6), 64004 (2010).
[CrossRef]

J. Non-Cryst. Solids (4)

K. Hayashi and N. Mitsuishi, “Thickness effect of the photodarkening in amorphous chalcogenide films,” J. Non-Cryst. Solids 299–302, 949–952 (2002).
[CrossRef]

H. Eguchi, Y. Suzuki, and M. Hirai, “Photo-induced absorption change in a-As2Se3 films at 80K,” J. Non-Cryst. Solids 95–96, 757–764 (1987).
[CrossRef]

I. Z. Indutnyi and P. E. Shepeljavi, “Reversible photodarkening in As2Se3 nanolayers,” J. Non-Cryst. Solids 227–230, 700–704 (1998).
[CrossRef]

K. Tanaka, “Nanostructured chalcogenide glasses,” J. Non-Cryst. Solids 326–327, 21–28 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y. Kurioz, M. Klebanov, V. Lyubin, N. Eisenberg, M. Manevich, and Y. Reznikov, “Photoalignment of liquid crystals on chalcogenide glassy films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 94–104 (2008).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Opt. Mater. (1)

V. Lyubin, M. Klebanov, A. Bruner, N. Shitrit, and B. Sfez, “Transient photodarkening and photobleaching in glassy GeSe2 films,” Opt. Mater. 33(6), 949–952 (2011).
[CrossRef]

Phys. Rev. B (2)

V. Lyubin, M. Klebanov, R. Dror, and B. Sfez, “Transient photorefraction in Ge-Pb-S glassy films,” Phys. Rev. B 77(3), 035320 (2008).
[CrossRef]

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

I. Abdulhalim, R. Beserman, and R. Weil, “Photodarkening, structural instabilities, and crystallization of glassy As2Se3 induced by laser irradiation,” Phys. Rev. B Condens. Matter 40(18), 12476–12486 (1989).
[CrossRef] [PubMed]

V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B Condens. Matter 51(8), 5538–5541 (1995).
[CrossRef] [PubMed]

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[CrossRef] [PubMed]

Phys. Status Solidi B (2)

H. Fritzsche, “Critical discussion of models proposed to explain photo-induced anisotropies in chalcogenide glasses,” Phys. Status Solidi B 246(8), 1768–1772 (2009).
[CrossRef]

V. Lyubin, “Chalcogenide glassy photoresists: history of development, properties and applications,” Phys. Status Solidi B 246(8), 1758–1767 (2009).
[CrossRef]

Solid State Commun. (1)

I. Abdulhalim and R. Beserman, “Raman scattering study of light induced structural transformations in glassy As2Se3,” Solid State Commun. 64(6), 951–955 (1987).
[CrossRef]

Sov. Phys. Solid State (1)

V. M. Lyubin and V. K. Tikhomirov, “Photoinduced dichroism in films of chalcogenide glassy semiconductors,” Sov. Phys. Solid State 32, 1069–1074 (1990).

Thin Solid Films (1)

K. Tanaka, S. Kyohya, and A. Odajima, “Anomaly of the thickness dependence of photodarkening in amorphous chalcogenide films,” Thin Solid Films 111(3), 195–200 (1984).
[CrossRef]

Other (3)

M. Frumar, B. Frumarova, T. Wagner, and P. Nêmec, “Photoinduced phenomena in amorphous and glassy chalcogenides,” in Photoinduced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH, 2003), p. 23.

V. M. Lyubin and M. L. Klebanov, “Photo-induced anisotropy in chalcogenide glassy semiconductors,” in Photoinduced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH, 2003), p. 91.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for the investigation of the photodarkening and photoinduced anisotropy. 1 – Ar+ laser, 2 – Semitransparent mirror, 3 – Half wave plate, 4 – Shutter, 5 – Mirror, 6 – Attenuator, 7 – Electro-optical modulator, 8 – Polarizer, 9 – Experimental sample, 10 – Photodiode, 11 - Lock-in amplifier, 12 - Computer.

Fig. 2
Fig. 2

Transparency changes in As2S3 films with different thicknesses: (1) 20 nm (blue) (2) 100 nm (red), induced by the laser beam with intensity 1.24 W/cm2. Pump and probe beams polarization vectors are parallel along y.

Fig. 3
Fig. 3

Transparency changes in 100 nm thick As2S3 film induced by the laser beam with intensities: (1) 1.24 W/cm2, (blue) (2) 0.24 W/cm2, (red) and (3) 0.07 W/cm2, (green). Pump and probe beams polarization vectors are parallel along y.

Fig. 4
Fig. 4

Kinetics of linear dichroism generation and reorientation in As2S3 films with thicknesses: (1) 100 nm, (blue) (2) 50 nm, (red) (3) 20 nm, (green) and (4) 10 nm, (dark blue) under the action of linearly polarized laser beam with intensity of 1.24 W/cm2 having horizontal (Ix) and vertical (Iy) directions of the polarization vector. The probe beam polarization is modulated between x and y directions at 2 kHz frequency and the anisotropy is calculated every 1sec.

Fig. 5
Fig. 5

(a) Kinetics of linear dichroism generation and reorientation in 100 nm As2S3 film under the action of linearly polarized laser beams with pump intensity 0.07 W/cm2 having horizontal (Ix) and vertical (Iy) directions of the polarization vector. (b) The same when polarized light irradiation starts after long irradiation with non-polarized light. The probe beam polarization is modulated between x and y directions at 2 kHz frequency and the anisotropy is calculated every 1sec.

Fig. 6
Fig. 6

Kinetics of linear dichroism generation and reorientation in 100 nm As2S3 film under the action of linearly polarized laser beams with pump intensity 0.07 W/cm2 and also the dichroism decay under irradiation with circularly-polarized light of the same intensity: I 0 = I x = I y .

Fig. 7
Fig. 7

Experimental (dots) photoinduced dichroism signal versus time and fitting curves using a two exponentials expression (solid curves) for the three samples of thickness 20nm, 50nm and 100nm under the conditions of Fig. 4. The data in the table are the two exponential decay constants and coefficients ( A G , A S ) for the generation and stabilization processes.

Tables (2)

Tables Icon

Table 1 Selective Dissolution of As2S3 Films

Tables Icon

Table 2 Photodarkening in the As2S3 Films Using Different Light Sources

Metrics