Abstract

We experimentally demonstrate the possibility of photorefractive 2D self-focusing in bulk Cerium doped Strontium Barium Niobate (SBN:Ce) directly at telecommunications wavelengths (1.06 μm and 1.55 μm). Although the electro-optic coefficient of SBN is smaller at infrared wavelengths, 2D infrared self-trapping is observed and analyzed versus different parameters such as the laser beam intensity, the external applied electric field and time.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science286(5444), 1518–1523 (1999).
    [CrossRef] [PubMed]
  2. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B14(11), 3091–3101 (1997).
    [CrossRef]
  3. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, “Directional coupler with soliton-induced waveguides,” Opt. Lett.24(7), 475–477 (1999).
    [CrossRef]
  4. J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001).
    [CrossRef]
  5. E. DelRe, M. Tamburini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett.25(13), 963–965 (2000).
    [CrossRef]
  6. M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
    [CrossRef]
  7. D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998).
    [CrossRef]
  8. M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
    [CrossRef]
  9. M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
    [CrossRef]
  10. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
    [CrossRef] [PubMed]
  11. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
    [CrossRef]
  12. R. Uzdin, M. Segev, and G. Salamo, “Theory of self-focusing in photorefractive InP,” Opt. Lett.26(20), 1547–1549 (2001).
    [CrossRef]
  13. N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
    [CrossRef]
  14. D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
    [CrossRef]
  15. M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
    [CrossRef]
  16. T. Schwartz, Y. Ganor, T. Carmon, R. Uzdin, S. Schwartz, M. Segev, and U. El-Hanany, “Photorefractive solitons and light-induced resonance control in semiconductor CdZnTe,” Opt. Lett.27(14), 1229–1231 (2002).
    [CrossRef]
  17. C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
    [CrossRef] [PubMed]
  18. G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
    [PubMed]
  19. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
    [CrossRef]
  20. M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).
  21. M. F. Shih, P. Leach, M. Segev, M. H. Garret, G. Salamo, and G. C. Valley, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(5), 324–326 (1996).
    [CrossRef] [PubMed]
  22. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
    [CrossRef]
  23. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996).
    [CrossRef]
  24. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
    [CrossRef]

2010 (1)

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

2008 (2)

M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
[CrossRef]

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

2007 (2)

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
[CrossRef] [PubMed]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

2002 (1)

2001 (5)

R. Uzdin, M. Segev, and G. Salamo, “Theory of self-focusing in photorefractive InP,” Opt. Lett.26(20), 1547–1549 (2001).
[CrossRef]

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001).
[CrossRef]

M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).

2000 (1)

1999 (3)

1998 (2)

D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998).
[CrossRef]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

1997 (2)

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B14(11), 3091–3101 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

1996 (3)

1979 (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Agranat, A. J.

Alonzo, M.

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

Bliss, D.

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
[CrossRef] [PubMed]

Bryant, G.

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
[CrossRef] [PubMed]

Carmon, T.

Chauvet, M.

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
[CrossRef] [PubMed]

Chen, Z.

Dan, C.

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
[CrossRef] [PubMed]

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

DelRe, E.

Denz, C.

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001).
[CrossRef]

El-Hanany, U.

Fazio, E.

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

Feigelson, R. S.

Fressengeas, N.

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
[CrossRef] [PubMed]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996).
[CrossRef]

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Ganor, Y.

Garret, M. H.

Gorram, M.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Grabar, A.

Grabar, A. A.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Gunter, P.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Hawkins, S.

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
[CrossRef] [PubMed]

Herden, C.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).

Jazbinsek, M.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Juvalta, F.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Khelfaoui, N.

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

Kip, D.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).

D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998).
[CrossRef]

Klotz, M.

Krätzig, E.

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

Kugel, G.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996).
[CrossRef]

Kukhtarev, N.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Lan, S.

Leach, P.

Leblond, H.

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

Lee, H.

Markov, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Maufoy, J.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996).
[CrossRef]

Meng, H.

Mitchell, M.

Montemezzani, G.

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
[CrossRef] [PubMed]

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Montgomery, S. R.

Moretti, M.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

Moretti, P.

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998).
[CrossRef]

Mosimann, R.

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Odulov, S.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Pankrath, R.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

Petter, J.

M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
[CrossRef]

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001).
[CrossRef]

Salamo, G.

Salamo, G. J.

Schwartz, S.

Schwartz, T.

Segev, M.

T. Schwartz, Y. Ganor, T. Carmon, R. Uzdin, S. Schwartz, M. Segev, and U. El-Hanany, “Photorefractive solitons and light-induced resonance control in semiconductor CdZnTe,” Opt. Lett.27(14), 1229–1231 (2002).
[CrossRef]

R. Uzdin, M. Segev, and G. Salamo, “Theory of self-focusing in photorefractive InP,” Opt. Lett.26(20), 1547–1549 (2001).
[CrossRef]

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett.24(2), 77–79 (1999).
[CrossRef]

S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, “Directional coupler with soliton-induced waveguides,” Opt. Lett.24(7), 475–477 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science286(5444), 1518–1523 (1999).
[CrossRef] [PubMed]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B14(11), 3091–3101 (1997).
[CrossRef]

M. F. Shih, P. Leach, M. Segev, M. H. Garret, G. Salamo, and G. C. Valley, “Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett.21(5), 324–326 (1996).
[CrossRef] [PubMed]

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett.21(17), 1333–1335 (1996).
[CrossRef] [PubMed]

Shandarov, V.

Shih, M.

Shih, M. F.

Soskin, M.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science286(5444), 1518–1523 (1999).
[CrossRef] [PubMed]

Tamburini, M.

Tiemann, M.

M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
[CrossRef]

Tschudi, T.

M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
[CrossRef]

Uzdin, R.

Valley, G. C.

Vinetskii, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

Wesner, M.

M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

D. Kip, M. Wesner, V. Shandarov, and P. Moretti, “Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide,” Opt. Lett.23(12), 921–923 (1998).
[CrossRef]

Wilde, J. P.

Wolfersberger, D.

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

C. Dan, D. Wolfersberger, N. Fressengeas, G. Montemezzani, and A. Grabar, “Near infrared photorefractive self focusing in Sn2P2S6:Te crystals,” Opt. Express15(20), 12777–12782 (2007).
[CrossRef] [PubMed]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Appl. Phys. B (1)

M. Wesner, C. Herden, and D. Kip, “Electrical fixing of waveguide channels in strontium–barium niobate crystals,” Appl. Phys. B72, 733–736 (2001).

Appl. Phys. Lett. (3)

M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett.70(19), 2499–2501 (1997).
[CrossRef]

D. Wolfersberger, N. Khelfaoui, C. Dan, N. Fressengeas, and H. Leblond, “Fast photorefractive self-focusing in InP:Fe semiconductor at infrared wavelengths,” Appl. Phys. Lett.92(2), 021106 (2008).
[CrossRef]

M. Alonzo, C. Dan, D. Wolfersberger, and E. Fazio, “Coherent collisions of infrared self-trapped beams in photorefractive InP:Fe,” Appl. Phys. Lett.96(12), 121111 (2010).
[CrossRef]

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics22, 949–960 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

J. Petter and C. Denz, “Guiding and dividing waves with photorefractive solitons,” Opt. Commun.188, 55–61 (2001).
[CrossRef]

M. Tiemann, J. Petter, and T. Tschudi, “Infrared guiding behavior in a 1 X N spatial soliton switch,” Opt. Commun.281, 175–180 (2008).
[CrossRef]

M. Wesner, C. Herden, D. Kip, E. Krätzig, and P. Moretti, “Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides,” Opt. Commun.188, 69–76 (2001).
[CrossRef]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, “Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons,” Opt. Commun.145, 393–400 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. A (1)

N. Fressengeas, N. Khelfaoui, C. Dan, D. Wolfersberger, H. Leblond, and M. Chauvet, “Roles of resonance and dark irradiance for infrared photorefractive self-focusing and solitons in bipolar InP:Fe,” Phys. Rev. A75(6), 063834 (2007).
[CrossRef]

Phys. Rev. E (2)

M. Wesner, C. Herden, R. Pankrath, D. Kip, and M. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in SBN,” Phys. Rev. E64, 036613 (2001).
[CrossRef]

N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E54(6), 6866–6875 (1996).
[CrossRef]

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science286(5444), 1518–1523 (1999).
[CrossRef] [PubMed]

Other (1)

G. Montemezzani, C. Dan, M. Gorram, N. Fressengeas, D. Wolfersberger, F. Juvalta, R. Mosimann, M. Jazbinsek, P. Gunter, and A. A. Grabar, “Real-time photoinduced waveguides in Sn2P2S6 bulk crystals with visible or near infrared light,” in Controlling Light with Light: Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More, OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuB3.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Beam profiles at the output face of the crystal for w = 20 μm at λ = 1.06 μm (a) without any applied electric field (b) for E0=+4 kV/cm (c) corresponding transverse intensity profiles; beam intensity=68 W/cm2.

Fig. 2
Fig. 2

Temporal evolution of the self-focusing ratio at λ = 1.06 μm: external electric field E0=+3 kV/cm and beam intensity=48 W/cm2.

Fig. 3
Fig. 3

Self-focusing ratio as a function of the input beam peak intensity: waist: w= 20μm for I in the range 25 W/cm2–100 W/cm2 and E in the range 1 kV/cm–4 kV/cm.

Fig. 4
Fig. 4

Self-focusing ratio as a function of externally applied electric field E in the range 1 kV/cm–4 kV/cm: waist w= 20 μm and I=60 W/cm2.

Fig. 5
Fig. 5

Beam profiles at the output face of the crystal for w=20μm at λ = 1550 nm a) no electric field applied b) with an electric field of 4 kV/cm; beam intensity I=185 W/cm2.

Fig. 6
Fig. 6

Self-focusing ratio as a function of beam intensity at the input face of the crystal.

Metrics