Abstract

A multiple-energy, high fluence, MeV Fe ion implantation process was applied at 83 K to heavily damage a low band gap (0.79 eV) epitaxial InGaAsP layer. Optimal rapid thermal annealing conditions were found and produced a fast photoconductor with high resistivity (up to 2500 Ωcm) and Hall mobility around 400 cm2V−1s−1. Short photocarrier trapping times (0.3 ps – 3 ps) were observed via transient differential reflectivity measurements. Furthermore, photoconductive terahertz devices with coplanar electrodes were fabricated and validated. Under pulsed excitation with a 1550 nm femtosecond fiber laser source, antennas based on Fe-implanted InGaAsP are able to emit broadband radiation exceeding 2 THz. Given such specifications, this new material qualifies as a worthy candidate for an integration into optical terahertz spectrometer designs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral finger-prints,” Opt. Express11, 2549–2554 (2003).
    [CrossRef] [PubMed]
  2. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
    [CrossRef]
  3. A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
    [CrossRef]
  4. J.-F. Allard, A. Cornet, C. Debacq, M. Meurens, D. Houde, and D. Morris, “Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements,” Opt. Express19, 4644–4652 (2011).
    [CrossRef] [PubMed]
  5. M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
    [CrossRef]
  6. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995).
    [CrossRef] [PubMed]
  7. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
    [CrossRef] [PubMed]
  8. R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
    [CrossRef]
  9. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
    [CrossRef] [PubMed]
  10. R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
    [CrossRef]
  11. E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).
  12. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004).
    [CrossRef]
  13. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
    [CrossRef]
  14. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
    [CrossRef]
  15. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
    [CrossRef]
  16. H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
    [CrossRef]
  17. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005).
    [CrossRef]
  18. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
    [CrossRef]
  19. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
    [CrossRef]
  20. L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
    [CrossRef]
  21. F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
    [CrossRef]
  22. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
    [CrossRef]
  23. S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
    [CrossRef]
  24. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.
  25. P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.
  26. S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
    [CrossRef]
  27. S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006).
    [CrossRef]
  28. E. Wendler, “Mechanisms of damage formation in semiconductors,” Nucl. Instrum. Methods Phys. Res. B267, 2680–2689 (2009).
    [CrossRef]
  29. F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
    [CrossRef]
  30. T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
    [CrossRef]
  31. S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004).
    [CrossRef]
  32. V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
    [CrossRef]
  33. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991).
    [CrossRef]
  34. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
    [CrossRef]
  35. A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 1988).

2011

J.-F. Allard, A. Cornet, C. Debacq, M. Meurens, D. Houde, and D. Morris, “Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements,” Opt. Express19, 4644–4652 (2011).
[CrossRef] [PubMed]

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

2010

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

2009

E. Wendler, “Mechanisms of damage formation in semiconductors,” Nucl. Instrum. Methods Phys. Res. B267, 2680–2689 (2009).
[CrossRef]

2007

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

2006

S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006).
[CrossRef]

2005

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005).
[CrossRef]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

2004

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004).
[CrossRef]

S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

2003

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral finger-prints,” Opt. Express11, 2549–2554 (2003).
[CrossRef] [PubMed]

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

2002

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

1997

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

1996

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

1995

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995).
[CrossRef] [PubMed]

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

1992

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

1991

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991).
[CrossRef]

1988

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

1987

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
[CrossRef]

Ahmed, S.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Alexandrou, A.

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

Allard, J.-F.

Arnone, D. D.

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

Arthur, J. R.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

Bacher, F. R.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

Barcz, A.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Belov, S. P.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Benjamin, S. D.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Bernier, M.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Berry, E.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Bessho, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Biermann, K.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.

Blakemore, J. S.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Boettcher, J.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Böttcher, J.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

Brown, E. R.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

Cannard, P. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Carmody, C.

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

Chamberlain, J. M.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Chen, Y.

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

Chi, C.-C.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
[CrossRef]

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Cluff, J.A.

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

Cornet, A.

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Cunningham, J. E.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Davies, A. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Debacq, C.

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
[CrossRef]

Donhuijsen, K.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Dragoman, D.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004).
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004).
[CrossRef]

Driscoll, D. C.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

Duvillaret, L.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Ebner, J. T.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

Fitch, M. J.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

Fitzgerald, A. J.

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Franke-Wiekhorst, A.

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

Gaarder, A.

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

Garet, F.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Gibis, R.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

Gossard, A. C.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

Grischkowsky, D.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991).
[CrossRef]

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
[CrossRef]

Gwilliam, R.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Hamdi, M.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Hanson, M. P.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

Hatem, O.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Hayden, L. M.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

Hein, G.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Hensel, H.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Hirosumi, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Hoffmann, S

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Hofman, M.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Houde, D.

Hu, B. B.

Jagadish, C.

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

Jakiela, R.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

Kawase, K.

Kemp, M. C.

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

Klaus, T.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Kleine-Ostmann, T.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Knobloch, P.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Koch, M.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Korn, T.

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

Kozanecki, A.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Krumbholtz, N.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

Kuenzel, H.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Künzel, H.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

Kürner, T.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Lampin, J.-F.

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

Leahy-Hoppa, M. R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

Linfield, E. H.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.

Madan, A.

A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 1988).

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

Marcinkevicius, S.

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

McInturff, D.

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

Meurens, M.

Mittleman, D.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

Moodie, D. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Morris, D.

Nagai, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Nagle, J.

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

Nuss, M. C.

Ogawa, Y.

Ohtake, H.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Ortiz, V.

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

Osiander, R.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

Péronne, E.

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

Perret, E.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Pieciewicz, R.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

Pierz, K.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Prabhu, S. S.

S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004).
[CrossRef]

Qian, L.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

Ralph, S. E.

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991).
[CrossRef]

Rehberg, E.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Rezazadeh, A. A.

S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006).
[CrossRef]

Robertson, M. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Robinson, B. J.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

Roehle, H.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Saleck, A. H.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Sartorius, B.

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

Schildknecht, C.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Schnull, S.

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

Schoebel, J.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

Sealy, B. J.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Shaw, M. P.

A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 1988).

Smith, M.A.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Smith, P. W. E.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

Sperling, M.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Subramaniam, S. C.

S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006).
[CrossRef]

Sugiura, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005).
[CrossRef]

Taday, P. F.

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

Tan, H. H.

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

Tanaka, K.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Tanimoto, M.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Tedjini, S.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Thomson, D. A.

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005).
[CrossRef]

Too, P.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Tribe, W. R.

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

Urmann, G.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

Vena, A.

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Vengurlekar, A. S.

S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004).
[CrossRef]

Walker, G. C.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Wallace, P.

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

Watanabe, Y.

Wendler, E.

E. Wendler, “Mechanisms of damage formation in semiconductors,” Nucl. Instrum. Methods Phys. Res. B267, 2680–2689 (2009).
[CrossRef]

Wilke, I.

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

Winnewisser, G.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Wood, C. D.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

Woodall, J.

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

Woodward, R. M.

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

Yoshida, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Zheng, X.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.

Zinovev, N. N.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett.90, 101119 (2007).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett.86, 051908 (2005).
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation,” Appl. Phys. Lett.96, 194104 (2010).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett.86, 051104 (2005).
[CrossRef]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm,” Appl. Phys. Lett.87, 193510 (2005).
[CrossRef]

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53 As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett.61, 1347–1349 (1992).
[CrossRef]

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thomson, “Subpicosecond carrier lifetimes in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.71, 1513–1515 (1997).
[CrossRef]

F. E. Doany, D. Grischkowsky, and C.-C. Chi, “Carrier lifetime versus ion implantation dose in silicon on sapphire,” Appl. Phys. Lett.50, 460–462 (1987).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications,” Appl. Phys. Lett.82, 3913–3915 (2003).
[CrossRef]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of electrical and optical carrier injection,” Appl. Phys. Lett.56, 1972–1975 (1991).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004).
[CrossRef]

Chem. Phys. Lett.

M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett.434, 227–230 (2007).
[CrossRef]

IEEE Antennas Propag. Mag.

R. Pieciewicz, T. Kleine-Ostmann, N. Krumbholtz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag.49(6), 24–39 (2007).
[CrossRef]

J. Appl. Phys.

T. Korn, A. Franke-Wiekhorst, S. Schnull, and I. Wilke, “Characterization of nanometer As-clusters in low-temperature grown GaAs by transient reflectivity measurements,” J. Appl. Phys.91, 2333–2336 (2002).
[CrossRef]

S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity spectra in GaAs and GaN,” J. Appl. Phys.95, 7803–7812 (2004).
[CrossRef]

V. Ortiz, J. Nagle, J.-F. Lampin, E. Péronne, and A. Alexandrou, “Low-temperature-grown GaAs: Modeling of transient reflectivity experiments,” J. Appl. Phys.102, 043515 (2007).
[CrossRef]

J. Biol. Phys.

R. M. Woodward, P. Wallace, D. D. Arnone, and E. H. Linfield, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29, 257–261 (2003).
[CrossRef]

J. Mol. Spectros.

A. H. Saleck, M. Tanimoto, S. P. Belov, T. Klaus, and G. Winnewisser, “Millimetre- and submillimetre-wave rotational spectra of rare hydrogen sulfide isotopomers,” J. Mol. Spectros.171, 481–493 (1995).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

S. C. Subramaniam and A. A. Rezazadeh, “The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures,” Nucl. Instrum. Methods Phys. Res. B248, 59–66 (2006).
[CrossRef]

E. Wendler, “Mechanisms of damage formation in semiconductors,” Nucl. Instrum. Methods Phys. Res. B267, 2680–2689 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M.A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S Hoffmann, M. Hofman, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histopathological samples,” Phys. Med. Biol.47, 3875–3884 (2002).
[CrossRef] [PubMed]

Phys. Rev. B

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, “Optical-absorption coefficient of In1−xGaxAs/InP,” Phys. Rev. B37, 2551–2557 (1988).
[CrossRef]

S. E. Ralph, Y. Chen, J. Woodall, and D. McInturff, “Subpicosecond photoconductivity of In0.53Ga0.47As: Inter-valley scattering rates observed via THz spectroscopy,” Phys. Rev. B54, 5568–5573 (1996).
[CrossRef]

Proc. SPIE

S. Marcinkevicius, A. Gaarder, C. Carmody, H. H. Tan, and C. Jagadish, “Ultrafast carrier dynamics in highly resistive InP and InGaAs produced by ion implantation,” Proc. SPIE5352, 299–309 (2004).
[CrossRef]

M. C. Kemp, P. F. Taday, J.A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE5070, 44–52 (2003).
[CrossRef]

Prog. Quantum Electron.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron.8, 1–66 (2004).
[CrossRef]

Radioengineering

E. Perret, M. Hamdi, A. Vena, F. Garet, M. Bernier, L. Duvillaret, and S. Tedjini, “RF and THz identification using a new generation of chipless RFID tags,” Radioengineering20, 380–386 (2011).

Other

H. Kuenzel, J. Boettcher, K. Biermann, H. Hensel, H. Roehle, and B. Sartorius, “Low temperature MBE-grown In(Ga,Al)As/InP structures for 1.55 μm THz photoconductive antenna applications,” in 20th International Conference on Indium Phosphide and Related Materials, IPRM 2008 (IEEE, New York, 2008), pp. 1–4.
[CrossRef]

A. Madan and M. P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 1988).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Series: Stopping and Ranges of Ions in Matter (Pergamon Press, 1984), Vol. 1.

P. Too, S. Ahmed, R. Jakiela, A. Barcz, A. Kozanecki, B. J. Sealy, and R. Gwilliam, “Implant isolation of both n-type InP and InGaAs by iron irradiation: Effect of post-implant annealing temperature,” in Proceedings of the 11th IEEE Int. Symp. on Elec. Dev. for Micro. and Opto. Appl., (IEEE, New York, 2003), pp. 18–23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Effects of a 30 s RTA (400 °C to 800 °C) on (a) resistivity, (b) free carrier density and (c) Hall mobility of implanted InGaAsP with an Fe fluence of 2.1 × 1015 cm−2 at 83 K. Data for as-implanted samples are indicated at 300 °C, which was the In alloying temperature. Two wafers were used and their as-grown parameters are tabulated here. The solid lines are only guides for the eye.

Fig. 2
Fig. 2

White light transmission loss spectra of as-grown, implanted and annealed In-GaAsP/InP samples from wafer 1. The spectrum analyzer resolution bandwidth = 1 nm, the scanning step = 1 nm, and a 10-point Savitsky-Golay smoothing was applied. The y-axis reference level is located at 2.4 dB, it is the average transmission loss from a cavity with facet reflection of 27 %. The figure inset shows the optical absorption factor within the 1.5 μm-thick quaternary layer around 1550 nm.

Fig. 3
Fig. 3

Schematic of the transient differential reflectivity setup configured for testing semiconductor chips (SC) at 1550 nm.

Fig. 4
Fig. 4

(a) Normalized differential reflectivity measurements (circles) and fitted curves (solid lines) for InGaAsP (wafer 2) implanted with Fe at a fluence of 2.1 × 1015 cm−2 at 83 K, after 30 s RTA at various temperature. (b) Amplitude ratio A1/A2 and (c) decay times τ1 and τ2 are plotted against the RTA temperature, after their extraction from curve fitting.

Fig. 5
Fig. 5

(a) Time-domain signal emitted from a photoconductive antenna made of Fe-implanted InGaAsP annealed at 600 °C, excited by 250 fs pulses from an Er-doped fiber laser (Ppump = 80 mW) at Vbias = 50 V (4.2 kV/cm) and detected using a 0.5 mm thick ZnTe electro-optic crystal. (b) Amplitude spectrum obtained by fast Fourier transform of the temporal signal.

Tables (1)

Tables Icon

Table 1 Summary of Results Reported for Ultrafast Photoconductive Layers Grown on Semi-Insulating InP Which Were Used for THz Emission

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ R R I probe ( t ) * [ I pump ( t ) * U ( t ) ] N ph ( t )
U ( t ) = H ( t ) [ A 1 exp ( t τ 1 ) + A 2 exp ( t τ 2 ) ]

Metrics