Abstract

Both exogenous and endogenous two-photon absorption were shown to significantly enhance femtosecond laser micromachining in corneal tissue. Comparison with previous results without two-photon enhancement demonstrated a much larger refractive index change, up to 0.037.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
    [CrossRef]
  2. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express10(3), 171–176 (2002).
    [PubMed]
  3. M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
    [CrossRef] [PubMed]
  4. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197 (2009).
    [CrossRef] [PubMed]
  5. M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express12(18), 4275–4281 (2004).
    [CrossRef] [PubMed]
  6. L. J. Kugler and M. X. Wang, “Lasers in refractive surgery: history, present, and future,” Appl. Opt.49(25), F1–F9 (2010).
    [CrossRef] [PubMed]
  7. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
    [CrossRef] [PubMed]
  8. B. H. Jeng, “Preserving the cornea: corneal storage media,” Curr. Opin. Ophthalmol.17(4), 332–337 (2006).
    [CrossRef] [PubMed]
  9. L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
    [CrossRef] [PubMed]
  10. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
    [CrossRef] [PubMed]
  11. K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
    [CrossRef] [PubMed]
  12. S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
    [CrossRef] [PubMed]
  13. R. W. Boyd, Nonlinear Optics (Elsevier, 2008), Chap. 1.
  14. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B26(9), 1679–1687 (2009).
    [CrossRef]

2010 (2)

L. J. Kugler and M. X. Wang, “Lasers in refractive surgery: history, present, and future,” Appl. Opt.49(25), F1–F9 (2010).
[CrossRef] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

2006 (2)

B. H. Jeng, “Preserving the cornea: corneal storage media,” Curr. Opin. Ophthalmol.17(4), 332–337 (2006).
[CrossRef] [PubMed]

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
[CrossRef] [PubMed]

2004 (2)

S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
[CrossRef] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

2003 (1)

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
[CrossRef] [PubMed]

1999 (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Alió, J. L.

S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
[CrossRef] [PubMed]

Auffarth, G. U.

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
[CrossRef] [PubMed]

Bille, J. F.

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Bourne, W. M.

L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
[CrossRef] [PubMed]

Bühren, J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Dennis, S.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
[CrossRef] [PubMed]

Ding, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B26(9), 1679–1687 (2009).
[CrossRef]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Giese, G.

Han, M.

Hodge, D. O.

L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
[CrossRef] [PubMed]

Holzer, M. P.

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
[CrossRef] [PubMed]

Horvath, C.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Huxlin, K. R.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Jani, D.

Jeng, B. H.

B. H. Jeng, “Preserving the cornea: corneal storage media,” Curr. Opin. Ophthalmol.17(4), 332–337 (2006).
[CrossRef] [PubMed]

Juhasz, T.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Khan, S.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
[CrossRef] [PubMed]

Knox, W. H.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B26(9), 1679–1687 (2009).
[CrossRef]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Koenig, K.

Krauss, O.

Kugler, L. J.

Künzler, J. F.

Kurtz, R. M.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Labenski, G.

Linhardt, J.

Loesel, F. H.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Malta, J. B.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197 (2009).
[CrossRef] [PubMed]

Meek, K. M.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
[CrossRef] [PubMed]

Mourou, G.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Nagy, L. J.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Nelson, L. R.

L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
[CrossRef] [PubMed]

Patel, S.

S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
[CrossRef] [PubMed]

Pawar, S.

Pérez-Santonja, J. J.

S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
[CrossRef] [PubMed]

Rabsilber, T. M.

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
[CrossRef] [PubMed]

Riemann, I.

Smith, T.

Soong, H. K.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197 (2009).
[CrossRef] [PubMed]

Sun, H.

Wang, M. X.

Xu, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

Zickler, L.

Am. J. Ophthalmol. (1)

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J.85(4), 2205–2212 (2003).
[CrossRef] [PubMed]

Cornea (1)

L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

B. H. Jeng, “Preserving the cornea: corneal storage media,” Curr. Opin. Ophthalmol.17(4), 332–337 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (4)

M. P. Holzer, T. M. Rabsilber, and G. U. Auffarth, “Femtosecond laser-assisted corneal flap cuts: morphology, accuracy, and histopathology,” Invest. Ophthalmol. Vis. Sci.47(7), 2828–2831 (2006).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci.49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci.51(2), 850–856 (2010).
[CrossRef] [PubMed]

S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Other (1)

R. W. Boyd, Nonlinear Optics (Elsevier, 2008), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for Intra-tissue Refractive Index Shaping (IRIS). When the flip mirrors are in, the near-infrared (NIR) laser pulses at 800 nm passes through the system, and the procedure is called NIR-IRIS. When the flip mirrors are out, NIR laser pulses are converted to blue laser pulses at 400 nm, and the procedure is termed Blue-IRIS.

Fig. 2
Fig. 2

Effect of Sodium Fluorescein (Na-Fl) doping (1%) on the transimission spectrum of living corneal tissue, stored in Optisol-GS solution. Note how Na-Fl doping decreases transmissivity of the cornea in the 300-500nm wavelength range, which corresponds well with the absorption spectrum of Na-Fl.

Fig. 3
Fig. 3

(A): NIR femtosecond IRIS (NIR-IRIS) in living corneal tissue doped with 1% Na-Fl. Scanning speed is 2 mm/s, and pulse energy is ~1.5 nJ. Refractive index change is ~0.012. Damage lines on two sides (arrow) are for identification purposes only. (B): Blue femtosecond IRIS (Blue-IRIS) in native live cornea. Scanning speed is 5 mm/s, and pulse energy is ~1 nJ. Refractive index change is ~0.037. Damage lines on two sides (arrow) are for identification purposes only.

Fig. 4
Fig. 4

Comparison of refractive index changes attainable in live cornea induced by Blue-IRIS and NIR-IRIS. Measures are provided as a function of scan speed. Blue-IRIS was performed in undoped corneal tissue only, while NIR-IRIS data was obtained in corneal tissues doped with various concentrations of Sodium Fluorescein (Na-Fl).

Fig. 5
Fig. 5

Transmitted versus input blue femtosecond laser power in native live corneal tissue (i.e. without any doping). Note the increased nonlinear absorption of the tissue (computed as increasing difference in transmitted power between in-focus and out-of-focus conditions) as input power is increased above ~30mW.

Fig. 6
Fig. 6

Nonlinear absorption in native live corneal tissue as a function of input laser power.

Metrics