Abstract

Unusual generation of molecular oxygen confined in a void inside the bulk of GeO2 glass is observed with the Raman spectroscopy. The voids are formed by single tightly-focussed femtosecond laser pulses, converting a host glass material into a high temperature plasma, which explodes creating a void and inducing unexpected phase transformations. The intensity of the 1556 cm−1 Raman line, that is a signature of molecular oxygen, increases with pulse energy. The mechanism of O2 formation and material synthesis in plasma is presented and its relevance to fundamental problems of matter at high pressure and temperature conditions and subject to geo-physical sciences is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
    [CrossRef]
  2. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
    [CrossRef]
  3. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
    [CrossRef]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  5. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
    [CrossRef]
  6. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express13, 5939–5946 (2005).
    [CrossRef] [PubMed]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
    [CrossRef]
  8. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
    [CrossRef]
  9. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
    [CrossRef]
  10. M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
    [CrossRef]
  11. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
    [CrossRef]
  12. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  13. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  14. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
    [CrossRef]
  15. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008).
    [CrossRef]
  16. B. Poumellec, M. Lancry, J. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16, 18354–18361 (2008).
    [CrossRef] [PubMed]
  17. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
    [CrossRef] [PubMed]
  18. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
    [CrossRef]
  19. S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
    [CrossRef]
  20. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  21. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
    [CrossRef]
  22. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
    [CrossRef]
  23. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007).
    [CrossRef]
  24. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
    [CrossRef]
  25. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
    [CrossRef]
  26. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
    [CrossRef] [PubMed]
  27. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
    [CrossRef]
  28. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).
  29. R. P. Drake, “High-energy-density physics,” Phys. Today63, 28–33 (2010).
    [CrossRef]
  30. E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
    [CrossRef]
  31. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
    [CrossRef]
  32. P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater.4, 19–25 (2005).
    [CrossRef]
  33. Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
    [CrossRef] [PubMed]
  34. D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
    [CrossRef] [PubMed]
  35. Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004).
    [CrossRef]
  36. J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
    [CrossRef]
  37. C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010).
    [CrossRef] [PubMed]
  38. T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
    [CrossRef]
  39. J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982).
    [CrossRef]
  40. P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater.1, 19–25 (2002).
    [CrossRef]
  41. T. Ahrens, “Dynamic compression of Earth materials,” Science207, 1035–1041 (1980).
    [CrossRef] [PubMed]
  42. W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
    [CrossRef]
  43. S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
    [CrossRef]
  44. A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005).
    [CrossRef] [PubMed]

2011 (6)

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

2010 (6)

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010).
[CrossRef] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

R. P. Drake, “High-energy-density physics,” Phys. Today63, 28–33 (2010).
[CrossRef]

2009 (8)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007).
[CrossRef]

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

2006 (3)

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

2005 (3)

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express13, 5939–5946 (2005).
[CrossRef] [PubMed]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005).
[CrossRef] [PubMed]

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater.4, 19–25 (2005).
[CrossRef]

2004 (1)

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004).
[CrossRef]

2003 (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

2002 (3)

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
[CrossRef]

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater.1, 19–25 (2002).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

1997 (2)

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

1996 (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

1989 (1)

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
[CrossRef]

1982 (1)

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982).
[CrossRef]

1980 (1)

T. Ahrens, “Dynamic compression of Earth materials,” Science207, 1035–1041 (1980).
[CrossRef] [PubMed]

Ahrens, T.

T. Ahrens, “Dynamic compression of Earth materials,” Science207, 1035–1041 (1980).
[CrossRef] [PubMed]

Ahrens, T. J.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
[CrossRef]

Anderson, W. W.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
[CrossRef]

Ani-Joseph, S.

Beresna, M.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

Bickauskaite, G.

Biener, J.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Bradley, D. K.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
[CrossRef]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

Braun, D. G.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Bressel, L.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

Buividas, R.

Cerullo, G.

Chen, W. J.

Chichkov, B.

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

Collins, G. W.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

da Jornada, J. A. H.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Danilevicius, P.

Davis, K. M.

Day, D.

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

Desai, S. R.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

Drake, R. P.

R. P. Drake, “High-energy-density physics,” Phys. Today63, 28–33 (2010).
[CrossRef]

Eaton, S. M.

Eggert, J. H.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Eremets, M.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Farsari, M.

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Freiman, Y. A.

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004).
[CrossRef]

Gadonas, R.

Gaižauskas, E.

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Gecevicius, M.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

Geshi, M.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Glezer, E.

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

Gross, T. M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007).
[CrossRef]

Gu, M.

Haines, J.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Hamada, I.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Hamza, A. V.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Hayasaki, Y.

Herman, P. R.

Hicks, D. G.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Hirao, K.

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Ho, S.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Isaka, M.

Jarutis, V.

Jodl, H. J.

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004).
[CrossRef]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011).
[CrossRef] [PubMed]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Kagayama, S.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Kazansky, P.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008).
[CrossRef]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Koyama, T.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

Kusakabe, K.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Lancry, M.

Laporta, P.

Léger, J. M.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Li, J. Z.

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Luther-Davis, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

Lyakhov, A.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Ma, Y.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Malinauskas, M.

Marangoni, M.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Martinez-Andrieux, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

Matsuo, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

McMahan, A. K.

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982).
[CrossRef]

McMillan, P. F.

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater.4, 19–25 (2005).
[CrossRef]

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater.1, 19–25 (2002).
[CrossRef]

Medvedev, S.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Miura, K.

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006).
[CrossRef]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Moriarty, J. A.

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982).
[CrossRef]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

Nagao, H.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Nagara, H.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Needs, R. J.

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010).
[CrossRef] [PubMed]

Ng, M. L.

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–S200 (2007).

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Oda, T.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Oganov, A.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Oganov, A. R.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005).
[CrossRef] [PubMed]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Ono, S.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005).
[CrossRef] [PubMed]

Osellame, R.

Pereira, A. S.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Petitet, J. P.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Pickard, C. J.

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010).
[CrossRef] [PubMed]

Polli, D.

Poulin, J.

Poumellec, B.

Prakapenka, V.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Prisbrey, S. T.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Ramponi, R.

Rode, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Rohlfing, C. M.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

Rudd, R. E.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Schmidt, M.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Shimizu, H.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Silvestri, S. D.

Smith, R. F.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

Sugimori, K.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Sugimoto, N.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

Suzuki, N.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Svendsen, B.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
[CrossRef]

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008).
[CrossRef]

Taccheo, S.

Takita, A.

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Tikhonchuk, V.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Tomozawa, M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007).
[CrossRef]

Trojan, I.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Tünnermann, S. N. A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

Vale, M.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Vanagas, E.

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Wanga, L.-S.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

Wu, H.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

Xie, Y.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008).
[CrossRef]

Zhang, H.

Žukauskas, A.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

Appl. Phys. A (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003).
[CrossRef]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98, 201101 (2011).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97, 211108 (2010).
[CrossRef]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97, 221102 (2010).
[CrossRef]

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997).
[CrossRef]

Chin. Opt. Lett. (1)

Earth Planet. Sci. Lett. (1)

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett.246, 326–335 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009).
[CrossRef]

J. Chem. Phys. (1)

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys.106, 1309–1317 (1997).
[CrossRef]

J. Non-Cryst. Sol. (1)

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol.353, 4762–4766 (2007).
[CrossRef]

J. Non-Cryst. Solids (2)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids355, 1160–1162 (2009).
[CrossRef]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009).
[CrossRef]

J. Non-Crystal. Solids (1)

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids357, 2637–2640 (2011).
[CrossRef]

J. Opt. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010).
[CrossRef]

J. Phys.: Condens. Matter (1)

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter19, 365211 (2007).
[CrossRef]

Nat. Mater. (4)

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater.1, 19–25 (2002).
[CrossRef]

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater.9, 624–627 (2010).
[CrossRef] [PubMed]

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater.4, 19–25 (2005).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002).
[CrossRef]

Nat. Photonics (2)

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics3, 450–452 (2009).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics2, 99–104 (2008).
[CrossRef]

Nature (2)

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature458, 182–185 (2009).
[CrossRef] [PubMed]

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature383, 401 (1996).
[CrossRef]

Nature Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun.2, 445 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Earth Planetary Inter. (1)

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter.55, 208–220 (1989).
[CrossRef]

Phys. Rep. (1)

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep.401, 1–228 (2004).
[CrossRef]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Phys. Rev. Lett (1)

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett102, 075503 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103, 103903 (2009).
[CrossRef] [PubMed]

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett.48, 809–812 (1982).
[CrossRef]

Phys. Today (1)

R. P. Drake, “High-energy-density physics,” Phys. Today63, 28–33 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci.102, 10828–10831 (2005).
[CrossRef] [PubMed]

Science (1)

T. Ahrens, “Dynamic compression of Earth materials,” Science207, 1035–1041 (1980).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Backscattered image of a typical sample: a single layer of separated void-structures at 5–7 μm depth below the surface (here in BaF2). Focused 633 nm cw-laser was used in Raman detection of micro-modifications around void-structures: an optical image of the focal spot on the surface and on the void-structure. The region of interest is selected by a square (marked) for mapping.

Fig. 2
Fig. 2

Raman spectrum of single void structures recorded at different 150 fs/800 nm pulse energies. The arrows show tendency at increasing pulse energy. The inset present evolution of O2 line intensity.

Fig. 3
Fig. 3

The correlation of the Raman signature at 1556 cm−1 (see, Fig. 2) vs pulse energy. The line is an eye guide; the gray profile shows the background signal of oxygen by focusing on the surface.

Fig. 4
Fig. 4

Spatial map of the voids at the O2 1556 cm−1 (a) and 520 cm−1 (b) Raman lines. Depth of scan is centered on the voids plane. The dashed eye-guides shows alignment of the voids. Inset in (a) shows 3D rendering of the plot. Pulse energy Ep = 500 nJ.

Metrics