Abstract

Unusual generation of molecular oxygen confined in a void inside the bulk of GeO2 glass is observed with the Raman spectroscopy. The voids are formed by single tightly-focussed femtosecond laser pulses, converting a host glass material into a high temperature plasma, which explodes creating a void and inducing unexpected phase transformations. The intensity of the 1556 cm−1 Raman line, that is a signature of molecular oxygen, increases with pulse energy. The mechanism of O2 formation and material synthesis in plasma is presented and its relevance to fundamental problems of matter at high pressure and temperature conditions and subject to geo-physical sciences is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  2. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
    [Crossref]
  3. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002).
    [Crossref]
  4. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [Crossref] [PubMed]
  5. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
    [Crossref]
  6. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [Crossref] [PubMed]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
    [Crossref]
  8. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354, 416–424 (2009).
    [Crossref]
  9. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  10. M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
    [Crossref]
  11. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
    [Crossref]
  12. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
    [Crossref] [PubMed]
  13. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
    [Crossref] [PubMed]
  14. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
    [Crossref]
  15. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
    [Crossref]
  16. B. Poumellec, M. Lancry, J. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16, 18354–18361 (2008).
    [Crossref] [PubMed]
  17. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
    [Crossref] [PubMed]
  18. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
    [Crossref]
  19. S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
    [Crossref]
  20. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref] [PubMed]
  21. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
    [Crossref]
  22. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
    [Crossref]
  23. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol. 353, 4762–4766 (2007).
    [Crossref]
  24. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett. 31, 80–82 (2006).
    [Crossref]
  25. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]
  26. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
    [Crossref] [PubMed]
  27. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
    [Crossref]
  28. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–S200 (2007).
  29. R. P. Drake, “High-energy-density physics,” Phys. Today 63, 28–33 (2010).
    [Crossref]
  30. E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  31. S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
    [Crossref]
  32. P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater. 4, 19–25 (2005).
    [Crossref]
  33. Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
    [Crossref] [PubMed]
  34. D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
    [Crossref] [PubMed]
  35. Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep. 401, 1–228 (2004).
    [Crossref]
  36. J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
    [Crossref]
  37. C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).
    [Crossref] [PubMed]
  38. T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
    [Crossref]
  39. J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett. 48, 809–812 (1982).
    [Crossref]
  40. P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater. 1, 19–25 (2002).
    [Crossref]
  41. T. Ahrens, “Dynamic compression of Earth materials,” Science 207, 1035–1041 (1980).
    [Crossref] [PubMed]
  42. W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
    [Crossref]
  43. S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
    [Crossref]
  44. A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. 102, 10828–10831 (2005).
    [Crossref] [PubMed]

2011 (6)

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[Crossref] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

2010 (6)

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

R. P. Drake, “High-energy-density physics,” Phys. Today 63, 28–33 (2010).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[Crossref]

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).
[Crossref] [PubMed]

2009 (8)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354, 416–424 (2009).
[Crossref]

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol. 353, 4762–4766 (2007).
[Crossref]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–S200 (2007).

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

2006 (3)

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett. 31, 80–82 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

2005 (3)

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[Crossref] [PubMed]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. 102, 10828–10831 (2005).
[Crossref] [PubMed]

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater. 4, 19–25 (2005).
[Crossref]

2004 (1)

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep. 401, 1–228 (2004).
[Crossref]

2003 (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

2002 (3)

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater. 1, 19–25 (2002).
[Crossref]

1997 (2)

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1996 (2)

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

1989 (1)

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
[Crossref]

1982 (1)

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett. 48, 809–812 (1982).
[Crossref]

1980 (1)

T. Ahrens, “Dynamic compression of Earth materials,” Science 207, 1035–1041 (1980).
[Crossref] [PubMed]

Ahrens, T.

T. Ahrens, “Dynamic compression of Earth materials,” Science 207, 1035–1041 (1980).
[Crossref] [PubMed]

Ahrens, T. J.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
[Crossref]

Anderson, W. W.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
[Crossref]

Ani-Joseph, S.

Beresna, M.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Bickauskaite, G.

Biener, J.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Bradley, D. K.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[Crossref]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Braun, D. G.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Bressel, L.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

Buividas, R.

Cerullo, G.

Chen, W. J.

Chichkov, B.

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

Collins, G. W.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

da Jornada, J. A. H.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Danilevicius, P.

Davis, K. M.

Day, D.

de Ligny, D.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

Desai, S. R.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

Drake, R. P.

R. P. Drake, “High-energy-density physics,” Phys. Today 63, 28–33 (2010).
[Crossref]

Eaton, S. M.

Eggert, J. H.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Eremets, M.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Farsari, M.

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Freiman, Y. A.

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep. 401, 1–228 (2004).
[Crossref]

Gadonas, R.

Gaižauskas, E.

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Geshi, M.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Glezer, E.

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Gross, T. M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol. 353, 4762–4766 (2007).
[Crossref]

Gu, M.

Haines, J.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Hallo, L.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Hamada, I.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Hamza, A. V.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Hayasaki, Y.

Herman, P. R.

Hicks, D. G.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Hirao, K.

Hirao, N.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Ho, S.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Isaka, M.

Jarutis, V.

Jodl, H. J.

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep. 401, 1–228 (2004).
[Crossref]

Juodkazis, S.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express 19, 5725–5734 (2011).
[Crossref] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011).
[Crossref] [PubMed]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[Crossref]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–S200 (2007).

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett. 31, 80–82 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Kagayama, S.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Kazansky, P.

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Kohara, S.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Koyama, T.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354, 416–424 (2009).
[Crossref]

Kusakabe, K.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Lancry, M.

Laporta, P.

Léger, J. M.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Li, J. Z.

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Luther-Davis, B.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

Lyakhov, A.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Malinauskas, M.

Marangoni, M.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Martinez-Andrieux, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

Matsuo, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

McMahan, A. K.

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett. 48, 809–812 (1982).
[Crossref]

McMillan, P. F.

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater. 4, 19–25 (2005).
[Crossref]

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater. 1, 19–25 (2002).
[Crossref]

Medvedev, S.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Misawa, H.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[Crossref]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–S200 (2007).

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett. 31, 80–82 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Miura, K.

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[Crossref]

E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett. 31, 80–82 (2006).
[Crossref]

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Moriarty, J. A.

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett. 48, 809–812 (1982).
[Crossref]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Nagao, H.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Nagara, H.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Needs, R. J.

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).
[Crossref] [PubMed]

Ng, M. L.

Nicolai, P.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Nishimura, K.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett. 5, S198–S200 (2007).

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Oda, T.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Oganov, A.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Oganov, A. R.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. 102, 10828–10831 (2005).
[Crossref] [PubMed]

Ohishi, Y.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Ono, S.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. 102, 10828–10831 (2005).
[Crossref] [PubMed]

Osellame, R.

Pereira, A. S.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Petitet, J. P.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Pickard, C. J.

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).
[Crossref] [PubMed]

Polli, D.

Poulin, J.

Poumellec, B.

Prakapenka, V.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Prisbrey, S. T.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Ramponi, R.

Rode, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Rohlfing, C. M.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

Rudd, R. E.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Saito, A.

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Schmidt, M.

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Shimizu, H.

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Silvestri, S. D.

Smith, R. F.

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Sonneville, C.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[Crossref]

Sugimori, K.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Sugimoto, N.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Suzuki, N.

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Svendsen, B.

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
[Crossref]

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Taccheo, S.

Takita, A.

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Tikhonchuk, V.

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Tomozawa, M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol. 353, 4762–4766 (2007).
[Crossref]

Trojan, I.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Tünnermann, S. N. A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

Vale, M.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Vanagas, E.

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Wanga, L.-S.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

Wu, H.

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

Xie, Y.

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Zhang, H.

Žukauskas, A.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18, 10209–10221 (2010).
[Crossref] [PubMed]

Appl. Phys. A (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[Crossref]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[Crossref]

Appl. Phys. Lett. (4)

M. Beresna, M. Gecevicius, P. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photo-polymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97, 211108 (2010).
[Crossref]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010).
[Crossref]

E. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Chin. Opt. Lett. (1)

Earth Planet. Sci. Lett. (1)

S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle,” Earth Planet. Sci. Lett. 246, 326–335 (2006).
[Crossref]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[Crossref]

J. Chem. Phys. (1)

S. R. Desai, H. Wu, C. M. Rohlfing, and L.-S. Wanga, “A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy2−(x=1−2,y=1−5),” J. Chem. Phys. 106, 1309–1317 (1997).
[Crossref]

J. Non-Cryst. Sol. (1)

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Sol. 353, 4762–4766 (2007).
[Crossref]

J. Non-Cryst. Solids (2)

S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic?,” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354, 416–424 (2009).
[Crossref]

J. Non-Crystal. Solids (1)

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Solids 357, 2637–2640 (2011).
[Crossref]

J. Opt. (1)

S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt. 12, 124007 (2010).
[Crossref]

J. Phys.: Condens. Matter (1)

T. Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, and N. Suzuki, “Oxygen at high pressures: a theoretical approach to monoatomic phases,” J. Phys.: Condens. Matter 19, 365211 (2007).
[Crossref]

Nat. Mater. (4)

P. F. McMillan, “New materials from high-pressure experiments,” Nat. Mater. 1, 19–25 (2002).
[Crossref]

C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624–627 (2010).
[Crossref] [PubMed]

P. F. McMillan, “Pressing on: the legacy of P. W. Bridgman,” Nat. Mater. 4, 19–25 (2005).
[Crossref]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Nat. Photonics (2)

M. Farsari and B. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[Crossref]

Nature (2)

Y. Ma, M. Eremets, A. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. Lyakhov, M. Vale, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).
[Crossref] [PubMed]

J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira, and J. A. H. da Jornada, “Discovery of hardest known oxide,” Nature 383, 401 (1996).
[Crossref]

Nature Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense Aluminum synthesized by ultra-fast micro-explosion,” Nature Commun. 2, 445 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Earth Planetary Inter. (1)

W. W. Anderson, B. Svendsen, and T. J. Ahrens, “Phase relations in iron-rich systems and implications for the Earth’s core,” Phys. Earth Planetary Inter. 55, 208–220 (1989).
[Crossref]

Phys. Rep. (1)

Y. A. Freiman and H. J. Jodl, “Solid oxygen,” Phys. Rep. 401, 1–228 (2004).
[Crossref]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Phys. Rev. Lett (1)

D. K. Bradley, J. H. Eggert, R. F. Smith, S. T. Prisbrey, D. G. Hicks, D. G. Braun, J. Biener, A. V. Hamza, R. E. Rudd, and G. W. Collins, “Diamond at 800 GPa,” Phys. Rev. Lett 102, 075503 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

J. A. Moriarty and A. K. McMahan, “High-pressure structural phase transitions in Na, Mg, and Al,” Phys. Rev. Lett. 48, 809–812 (1982).
[Crossref]

Phys. Today (1)

R. P. Drake, “High-energy-density physics,” Phys. Today 63, 28–33 (2010).
[Crossref]

Proc. Natl. Acad. Sci. (1)

A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. 102, 10828–10831 (2005).
[Crossref] [PubMed]

Science (1)

T. Ahrens, “Dynamic compression of Earth materials,” Science 207, 1035–1041 (1980).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Backscattered image of a typical sample: a single layer of separated void-structures at 5–7 μm depth below the surface (here in BaF2). Focused 633 nm cw-laser was used in Raman detection of micro-modifications around void-structures: an optical image of the focal spot on the surface and on the void-structure. The region of interest is selected by a square (marked) for mapping.

Fig. 2
Fig. 2

Raman spectrum of single void structures recorded at different 150 fs/800 nm pulse energies. The arrows show tendency at increasing pulse energy. The inset present evolution of O2 line intensity.

Fig. 3
Fig. 3

The correlation of the Raman signature at 1556 cm−1 (see, Fig. 2) vs pulse energy. The line is an eye guide; the gray profile shows the background signal of oxygen by focusing on the surface.

Fig. 4
Fig. 4

Spatial map of the voids at the O2 1556 cm−1 (a) and 520 cm−1 (b) Raman lines. Depth of scan is centered on the voids plane. The dashed eye-guides shows alignment of the voids. Inset in (a) shows 3D rendering of the plot. Pulse energy Ep = 500 nJ.

Metrics