Abstract

Silicon optical fibers fabricated using the molten core method possess high concentrations of oxygen in the core [Opt. Express 16, 18675 (2008)] due to dissolution of the cladding glass by the core melt. The presence of oxygen in the core can influence scattering, hence propagation losses, as well as limit the performance of the fiber. Accordingly, it is necessary to achieve oxygen-free silicon optical fibers prior to further optimization. In this work, silicon carbide (SiC) is added to the silicon (Si) core to provide an in situ reactive getter of oxygen during the draw process. Scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and powder x-ray diffraction (P-XRD) are used to verify that the glass-clad silicon optical fibers possess very low oxygen concentrations and that the SiC is consumed fully during the reactive molten core fabrication. Optical measurements indicated a reduction in light scattering out of the silicon core as expected. However, the measured attenuation of about 10 dB/cm, which is consistent with existing low-oxygen-content silicon fibers, implies that scattering might not be the dominant source of loss in these molten core-derived silicon fibers. More generally, this work shows that the high temperature processing of optical fibers can be an asset to drive chemical reactions rather than be limited by them.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
    [CrossRef] [PubMed]
  2. N. K. Goel, R. H. Stolen, S. Morgan, J.-K. Kim, D. Kominsky, and G. Pickrell, “Core-suction technique for the fabrication of optical fiber preforms,” Opt. Lett.31(4), 438–440 (2006).
    [CrossRef] [PubMed]
  3. N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
    [CrossRef]
  4. J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett.36(5), 687–688 (2011).
    [CrossRef] [PubMed]
  5. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express17(20), 18076–18082 (2009).
    [CrossRef] [PubMed]
  6. D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
    [CrossRef]
  7. C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
    [CrossRef]
  8. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
    [CrossRef] [PubMed]
  9. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express16(23), 18675–18683 (2008).
    [CrossRef] [PubMed]
  10. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express17(10), 8029–8035 (2009).
    [CrossRef] [PubMed]
  11. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express18(5), 4972–4979 (2010).
    [CrossRef] [PubMed]
  12. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
    [CrossRef]
  13. N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
    [CrossRef]
  14. E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett.14(14), 757–759 (1989).
    [CrossRef] [PubMed]
  15. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  16. S. Hu, “Dislocation pinning effect of oxygen atoms in silicon,” Appl. Phys. Lett.31(2), 53–55 (1977).
    [CrossRef]
  17. L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
    [CrossRef]
  18. N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett.36(13), 2480–2482 (2011).
    [CrossRef] [PubMed]
  19. G. Ervin, “Oxidation behavior of silicon carbide,” J. Am. Ceram. Soc.41(9), 347–352 (1958).
    [CrossRef]
  20. W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966).
    [CrossRef]
  21. J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
    [CrossRef]
  22. M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
    [CrossRef]
  23. S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992).
    [CrossRef]

2011

J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett.36(5), 687–688 (2011).
[CrossRef] [PubMed]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett.36(13), 2480–2482 (2011).
[CrossRef] [PubMed]

2010

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express18(5), 4972–4979 (2010).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
[CrossRef]

2009

2008

2007

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

2006

1995

1992

S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992).
[CrossRef]

1989

1981

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

1977

S. Hu, “Dislocation pinning effect of oxygen atoms in silicon,” Appl. Phys. Lett.31(2), 53–55 (1977).
[CrossRef]

1966

W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966).
[CrossRef]

1958

G. Ervin, “Oxidation behavior of silicon carbide,” J. Am. Ceram. Soc.41(9), 347–352 (1958).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Amezcua-Correa, A.

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

Badding, J.

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

Badding, J. V.

Baldo, M.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

Ballato, J.

Baril, N.

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Boden, S.

Burka, L.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III-V semiconductor core optical fiber,” Opt. Express18(5), 4972–4979 (2010).
[CrossRef] [PubMed]

Calkins, J.

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Da, N.

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Danto, S.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

Daw, M.

Ellison, M.

Ervin, G.

G. Ervin, “Oxidation behavior of silicon carbide,” J. Am. Ceram. Soc.41(9), 347–352 (1958).
[CrossRef]

Fink, Y.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Finlayson, C.

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

Foy, P.

Fukunaka, Y.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Goel, N. K.

Gopalan, V.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Granzow, N.

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Hakamada, M.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Hawkins, T.

He, R.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Healy, N.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett.36(13), 2480–2482 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express17(20), 18076–18082 (2009).
[CrossRef] [PubMed]

Hertl, W.

W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966).
[CrossRef]

Hibiya, T.

S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992).
[CrossRef]

Hon, N. K.

Hu, S.

S. Hu, “Dislocation pinning effect of oxygen atoms in silicon,” Appl. Phys. Lett.31(2), 53–55 (1977).
[CrossRef]

Jalali, B.

Joannopoulos, J.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

Kang, H.

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Kim, J.-K.

Kokuoz, B.

Kominsky, D.

Krieg, H.

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

Krishnamurthi, M.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Kusuda, H.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Lagonigro, L.

N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett.36(13), 2480–2482 (2011).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

Lorenz, J.

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

Lukas, H.

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

McMillen, C.

Morgan, S.

Morris, S.

J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Opt. Lett.36(5), 687–688 (2011).
[CrossRef] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
[CrossRef]

Nakamura, S.

S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992).
[CrossRef]

Nishiyama, T.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Oishi, T.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Orf, N.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Peacock, A.

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

Peacock, A. C.

Petrovich, M. N.

Petzow, G.

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

Pickrell, G.

Podila, R.

Powers, D. R.

Pultz, W.

W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966).
[CrossRef]

Ramirez, M.

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Rao, A. M.

Reppert, J.

Rice, R.

Rice, R. R.

Russell, P.

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Sazio, P.

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Sazio, P. J.

Schmidt, M.

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Shapira, O.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Sharma, S. R.

Shori, R.

Snitzer, E.

Sorin, F.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Sparks, J.

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

Sparks, J. R.

Stafsudd, O.

Stolen, R.

Stolen, R. H.

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Tumminelli, R.

Weiss, J.

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

Won, D.

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Wondraczek, L.

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Yazgan-Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
[CrossRef]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. K. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express17(10), 8029–8035 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Hu, “Dislocation pinning effect of oxygen atoms in silicon,” Appl. Phys. Lett.31(2), 53–55 (1977).
[CrossRef]

L. Lagonigro, N. Healy, J. Sparks, N. Baril, P. Sazio, J. Badding, and A. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010).
[CrossRef]

D. Won, M. Ramirez, H. Kang, V. Gopalan, N. Baril, J. Calkins, J. Badding, and P. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

C. Finlayson, A. Amezcua-Correa, P. Sazio, N. Baril, and J. Badding, “Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers,” Appl. Phys. Lett.90(13), 132110 (2007).
[CrossRef]

Calphad

J. Weiss, H. Lukas, J. Lorenz, G. Petzow, and H. Krieg, “Calculations of heterogeneous phase equilibria in oxide-nitride systems. I. The Quaternary System C–Si–N–O,” Calphad5(2), 125–140 (1981).
[CrossRef]

Int. J. Thermophys.

S. Nakamura and T. Hibiya, “Thermophysical properties data on molten semiconductors,” Int. J. Thermophys.13(6), 1061–1084 (1992).
[CrossRef]

J. Am. Ceram. Soc.

G. Ervin, “Oxidation behavior of silicon carbide,” J. Am. Ceram. Soc.41(9), 347–352 (1958).
[CrossRef]

J. Non-Cryst. Solids

N. Da, L. Wondraczek, M. Schmidt, N. Granzow, and P. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.

M. Hakamada, Y. Fukunaka, T. Oishi, T. Nishiyama, and H. Kusuda, “Carbothermic reduction of amorphous silica refined from diatomaceous earth,” Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci.41(2), 350–358 (2010).
[CrossRef]

Nat. Mater.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater.6(5), 336–347 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Fiber Technol.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol.16(6), 399–408 (2010).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

N. Orf, O. Shapira, F. Sorin, S. Danto, M. Baldo, J. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. U.S.A.108(12), 4743–4747 (2011).
[CrossRef]

Trans. Faraday Soc.

W. Pultz and W. Hertl, “SiO2 + SiC reaction at elevated temperatures. Part 1— Kinetics and mechanism,” Trans. Faraday Soc.62, 2499–2504 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental set-up used for qualitatively evaluating transmission and scattering by the silicon optical fiber.

Fig. 2
Fig. 2

(a) Scanning electron microscope (SEM) image of a silica glass-clad silicon core optical fiber drawn using a reactive molten core of Si + SiC. Energy dispersive spectroscopic (EDX) spatial maps qualitatively show the concentration of silicon (b) and oxygen (c) where a brighter region indicates higher elemental content.

Fig. 3
Fig. 3

Elemental profile across the silica glass-clad silicon core optical fiber drawn using a reactive molten core of Si + SiC.

Fig. 4
Fig. 4

Powder x-ray diffraction scans of the core precursor powder blend of Si and SiC with crystallographic indices given. Figure 4(a) is the full intensity range whereas Fig. 4(b) is a magnified intensity range to accentuate the reflections and fit to the Si and SiC standards.

Fig. 5
Fig. 5

(a) Powder x-ray diffraction (P-XRD) scan of the “Si + SiC”-derived silicon optical fiber with Si standard overlay and crystallographic indices for comparison; spectrum corrected to remove amorphous signature from cladding. (b) P-XRD scan of “Si + SiC”-derived silicon optical fiber over the selected two-theta region where SiC reflections should exist including an overlay of the SiC reflections. No reflections from SiC are observed in the drawn optical fiber.

Fig. 6
Fig. 6

Schematic representations of (a) the generalized Si-O-C ternary phase diagram, with smaller Si-SiO2-SiC ternary phase field highlighted, recast from [21] and (b) the SiO2 – SiC phase diagram recast and using the terminology from [19].

Tables (1)

Tables Icon

Table 1 Thermal Progression of Reactions in the SiO2 + SiC System*

Metrics