Abstract

We experimentally investigate surface plasmon coupled emission (SPCE) in the Kretschmann geometry using thin conjugated polymer films. The broad spectral emission from the polymer films usefully demonstrates how the spectral behaviour of SPCE follows clearly from the underlying dispersion of surface plasmon polaritons supported by the configuration. We pay particular attention to how the spectral bandwidth of the underlying emissive layer impacts on the overall performance. Overall the work highlights the many factors that may be considered when designing optimum optoelectronic devices based on metal-organic multilayers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
    [CrossRef]
  2. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
    [CrossRef]
  3. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
    [CrossRef] [PubMed]
  4. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express17(1), 185–192 (2009).
    [CrossRef] [PubMed]
  5. J. F. Revelli, “Excitation of waveguide modes in organic light-emitting diode structures by classical dipole oscillators,” Appl. Opt.45(27), 7151–7165 (2006).
    [CrossRef] [PubMed]
  6. T. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express13(14), 5522–5527 (2005).
    [CrossRef] [PubMed]
  7. P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
    [CrossRef]
  8. S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
    [CrossRef]
  9. T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
    [CrossRef]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  11. S. Shi, Z. Zhang, M. He, X. Li, J. Yang, and J. Du, “Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface,” Opt. Express18(10), 10685–10693 (2010).
    [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  13. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004).
    [CrossRef] [PubMed]
  14. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
    [CrossRef] [PubMed]
  15. W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
    [CrossRef] [PubMed]
  16. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
    [CrossRef]
  17. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
    [CrossRef] [PubMed]
  18. M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
    [CrossRef]
  19. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
    [CrossRef] [PubMed]
  20. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006).
    [CrossRef]
  21. L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
    [CrossRef]
  22. S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
    [CrossRef]
  23. K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
    [CrossRef]
  24. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
    [CrossRef] [PubMed]
  25. M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
    [CrossRef] [PubMed]
  26. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
    [CrossRef] [PubMed]
  27. K. Kato, “Attenuated total reflection and emission due to surface plasmon excitation of layer-by-layer ultrathin films containing azo-dye,” Thin Solid Films438–439, 101–107 (2003).
    [CrossRef]
  28. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
    [CrossRef]
  29. B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
    [CrossRef] [PubMed]
  30. R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
    [CrossRef]
  31. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
    [CrossRef]
  32. R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
    [CrossRef]
  33. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
    [CrossRef]
  34. M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
    [CrossRef]
  35. M. Nieto-Vesperinas and E. Wolf, “Generalized stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A3(12), 2038–2046 (1986).
    [CrossRef]
  36. J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
    [CrossRef] [PubMed]
  37. K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007).
    [CrossRef] [PubMed]
  38. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  39. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  40. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express7(8), 260–272 (2000).
    [CrossRef] [PubMed]
  41. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
    [CrossRef]

2010

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

S. Shi, Z. Zhang, M. He, X. Li, J. Yang, and J. Du, “Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface,” Opt. Express18(10), 10685–10693 (2010).
[CrossRef] [PubMed]

2009

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express17(1), 185–192 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

2008

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
[CrossRef] [PubMed]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

2007

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007).
[CrossRef] [PubMed]

2006

J. F. Revelli, “Excitation of waveguide modes in organic light-emitting diode structures by classical dipole oscillators,” Appl. Opt.45(27), 7151–7165 (2006).
[CrossRef] [PubMed]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006).
[CrossRef]

2005

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

T. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express13(14), 5522–5527 (2005).
[CrossRef] [PubMed]

2004

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

2003

K. Kato, “Attenuated total reflection and emission due to surface plasmon excitation of layer-by-layer ultrathin films containing azo-dye,” Thin Solid Films438–439, 101–107 (2003).
[CrossRef]

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
[CrossRef]

2002

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

2000

1998

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

1996

J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
[CrossRef] [PubMed]

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

M. Nieto-Vesperinas and E. Wolf, “Generalized stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A3(12), 2038–2046 (1986).
[CrossRef]

1984

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

Ariu, M.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

Aslan, K.

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Baldo, M. A.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Berini, P.

Bradley, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Bradley, D. D. C.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
[CrossRef]

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

Brongersma, M. L.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Byrne, S. J.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Campoy-Quiles, M.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

Celebi, K.

K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007).
[CrossRef] [PubMed]

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

Chan, W. C. W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Chen, C.

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
[CrossRef] [PubMed]

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

Courtois, J.

J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
[CrossRef] [PubMed]

Courty, J.

J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Du, J.

Etchegoin, P.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Feng, D.

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Fischer, H.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Ford, G.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Fujii, M.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Geddes, C. D.

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Grudzinski, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Gryczynski, I.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Gun’ko, Y. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Hayashi, S.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

He, M.

Heidel, T. D.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007).
[CrossRef] [PubMed]

Heliotis, G.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
[CrossRef]

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

Hobson, P.

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Hohenester, U.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

Hong, Z.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Hou, Y.

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

Hryciw, A.

Imaia, M.

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

Jiang, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Jun, Y. C.

Kaneko, F.

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

Kato, K.

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

K. Kato, “Attenuated total reflection and emission due to surface plasmon excitation of layer-by-layer ultrathin films containing azo-dye,” Thin Solid Films438–439, 101–107 (2003).
[CrossRef]

Ketterson, J. B.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Komarala, V. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Kostov, Y.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
[CrossRef] [PubMed]

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Leitner, A.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Li, S.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Li, X.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

Luan, L.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Maekawa, A.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Malicka, J.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Malyn, S. N.

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

Mapel, J. K.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

Mertz, J. C.

J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
[CrossRef] [PubMed]

Millstone, J. E.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Mirkin, C. A.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Mu, W.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Neal, T.

Nieto-Vesperinas, M.

Nowaczyk, K.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Ohdaira, Y.

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

Okamoto, K.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Pintani, M.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

Previte, M. J. R.

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

Qin, L.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Rakovich, Y. P.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Rao, G.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
[CrossRef] [PubMed]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

Revelli, J. F.

Rogach, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Sage, I.

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

Samuel, I. D. W.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

Schatz, G. C.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Scherer, A.

Shi, S.

Shinbo, K.

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

Sievert, P. R.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Singh, M.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

Smith, D. S.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

Sonnefraud, Y.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stavrinou, P. N.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tanev, S.

Tolosa, L.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

Turnbull, G. A.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

Tzolov, V.

Wasey, J. E.

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

Weber, W.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Wedge, S.

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

Wei, W.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Winter, G.

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006).
[CrossRef]

Wolf, E.

Xia, R.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
[CrossRef]

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

Xu, X.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Xue, C.

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Yamada, Y.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

Yang, J.

Yap, B. K.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

Zhang, Z.

Adv. Funct. Mater.

M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002).
[CrossRef]

Anal. Chem.

I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007).
[CrossRef]

G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006).
[CrossRef]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004).
[CrossRef]

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007).
[CrossRef]

R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003).
[CrossRef]

Biotechnol. Prog.

Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005).
[CrossRef] [PubMed]

Chem. Phys. Lett.

M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007).
[CrossRef]

Nano Lett.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008).
[CrossRef] [PubMed]

W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008).
[CrossRef] [PubMed]

Nat. Mater.

B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008).
[CrossRef] [PubMed]

Nat. Photonics

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008).
[CrossRef]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

New J. Phys.

L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008).
[CrossRef]

Opt. Express

Org. Electron.

R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003).
[CrossRef]

Phys. Rep.

G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. A

J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

Small

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010).
[CrossRef] [PubMed]

Thin Solid Films

K. Kato, “Attenuated total reflection and emission due to surface plasmon excitation of layer-by-layer ultrathin films containing azo-dye,” Thin Solid Films438–439, 101–107 (2003).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Normalized dissipated power density spectrum of a point dipole located in the middle of a Lumogen Red (38 nm) film atop a silver (50 nm) coated BK7 prism (c.f. schematic on right). The dissipated power is plotted as a function of the normalized in-plane momentum at 675 nm (c.f. Fig. 2 for Lumogen Red emission spectrum). The black curve and red curve correspond to perpendicular and parallel dipole orientation (c.f. schematic), respectively. The peak in the grey colored region in momentum space corresponds to surface plasmon polaritons excited at the silver/polymer interface, which can be coupled to the prism. The higher-momentum peak corresponds to SPPs at the silver/prism interface, which are dissipated as heat. k0 is light momentum in vacuum. The dissipated power density spectrum was obtained using a silver electric permittivity εAg = -20.5 + 0.8i and a Lumogen Red polymer refractive index of 1.86.

Fig. 2
Fig. 2

(a) Schematic of the prism structure and configuration for obtaining the angular distribution of the fluorescence from the polymer (Lumogen Red) layer. (b) Normalised fluorescence spectrum of the Lumogen Red polymer (red line). The spectral width of the bandpass filter is marked by the blue hatching and labeled BPF. The chemical structure of the thiophene-benzothiadiazole-thiophene (TBT) red-emitting chromophore unit of Lumogen Red - present at a 5% fraction in the polymer - is also shown above the spectral data.

Fig. 3
Fig. 3

(a) Calculated TM-polarized angular reflectivity curve and the TM-polarised angular radiation patterns for a wavelength of 675 nm. The structure modeled comprises a 40 nm thick silver film in the geometry depicted in Fig. 2. (b) The radiation profiles for both TE- and TM-polarized emission from the structure, displayed in a polar diagram. Both the reflectivity curve and radiation curves were calculated using a silver electric permittivity εAg = −20.5 + 0.8i and a Lumogen Red polymer index of 1.86.

Fig. 4
Fig. 4

Measured angular emission profiles for both TE- and TM-polarized emission for (a) 30 nm and (b) 53 nm thick silver films; the out-coupling angle range of 30° to 90° and 90° to 165° corresponds to prism and air-side, respectively. (c) The fraction of integrated intensity emitted to the prism side rprism as a function of silver thickness. Filled squares are experimental data and line is calculated. (d) The experimental angular spectra data from (b) plotted as a polar diagram.

Fig. 5
Fig. 5

Measured emission spectra at different out-coupling angles in the range 48.3° (black solid line) to 62.7° (blue solid line) for dAg = 63 nm. The spectra are shown for 62.7°, 61.2°, 59.6°, 58°, 56.4°, 54.8°, 53.2°, 51.6°, 49.9° and 48.3° (from left to right). The 56.4° spectrum is highlighted in red.

Fig. 6
Fig. 6

Wave vector (real part) dispersions for leaky (red line) and bound (blue) modes for dAg = 63 nm. Transfer matrix calculations (solid lines) are plotted together with experimental data (symbols). The light lines in vacuo (labeled c, black line) and in the prism (labeled c/np, grey line) are also shown. The schematics in the lower half of the figure show the transverse field patterns for the leaky and bound modes (the arrows indicate transverse energy flow).

Fig. 7
Fig. 7

(a) Experimental angular reflectivity (black dashed line, 675 nm light) and prism side radiation profiles (red and blue lines) for a 37 nm thick silver film. The red and blue lines are angular radiation distributions for the unfiltered Lumogen Red fluorescence spectrum and for the 10 nm band-pass filtered emission as shown in Fig. 2(b). (b) Angular full-width half-maximum values as a function of silver film thickness. The red square and blue circle data points are experimental data in the absence and presence, respectively, of the band-pass filter. The black and grey solid lines are corresponding results from modeling.

Fig. 8
Fig. 8

Silver film thickness dependence of the prism side emission peak intensity. The two cases shown are without (upper plot, red square data) and with (lower plot, blue circle data) 10 nmband-pass filtering. The solid lines are the calculated dependences.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ,|| (θ) | E ,|| ( z 0 ) E in | 2
P Δλ (θ)= Δλ α(λ) R PD P(λ,θ)

Metrics