Abstract

Spectroscopic, photocalorimetric and holographic measurements are conducted to investigate effects of stoichiometric thiol-to-ene ratio on the polymerization dynamics, refractive index modulation, recording sensitivity and polymerization shrinkage of volume gratings recorded in silica nanoparticle-polymer composite films based on step-growth radical addition polymerization. It is found that the polymerization rate of the composite system is maximized at the stoichiometric thiol-ene composition. It is also found that while the refractive index modulation and the recording sensitivity are maximized at the stoichiometric thiol-ene composition, polymerization shrinkage decreases with increasing the thiol monomer fraction. A negative correlation between gel point conversion and shrinkage is observed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002).
    [CrossRef]
  2. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43(10), 2125–2129 (2004).
    [CrossRef] [PubMed]
  3. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).
  4. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 .
    [CrossRef] [PubMed]
  5. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010).
    [CrossRef]
  6. Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology15, H. S. Nalwa ed., (American Scientific Publishers, Valencia, 2011), pp. 191–205, and references therein.
  7. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., (Springer, Berlin, 2000).
  8. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle--polymer composite films,” Opt. Lett.33(15), 1750–1752 (2008).
    [CrossRef] [PubMed]
  9. R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
    [CrossRef]
  10. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30(8), 839–841 (2005).
    [CrossRef] [PubMed]
  11. M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
    [CrossRef] [PubMed]
  12. J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
    [CrossRef]
  13. E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” in European Conference on Lasers and Electro-Optics/Quantum Electronics, Technical Digest (CD) (Optical Society of America, 2009), paper CC2.2-THU, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO/Europe-2009-CC2_2 .
  14. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35(3), 396–398 (2010).
    [CrossRef] [PubMed]
  15. Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
    [CrossRef]
  16. G. Odian, Principles of Polymerization, 4th ed. (Wiley, New York, 1994), Chap. 2.
  17. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
    [CrossRef] [PubMed]
  18. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-2-207 .
    [CrossRef]
  19. T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
    [CrossRef]
  20. N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
    [CrossRef]
  21. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
    [CrossRef]
  22. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
    [CrossRef]
  23. T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).
  25. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
    [CrossRef]
  26. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express19(14), 13395–13404 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13395 .
    [CrossRef] [PubMed]
  27. B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997).
    [CrossRef]
  28. N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
    [CrossRef]
  29. J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
    [CrossRef] [PubMed]

2011 (3)

2010 (4)

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35(3), 396–398 (2010).
[CrossRef] [PubMed]

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010).
[CrossRef]

2008 (1)

2007 (1)

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

2006 (3)

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 .
[CrossRef] [PubMed]

2005 (3)

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30(8), 839–841 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

2004 (3)

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
[CrossRef]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43(10), 2125–2129 (2004).
[CrossRef] [PubMed]

2003 (1)

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002).
[CrossRef]

2001 (1)

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

2000 (1)

T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

1997 (1)

B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

Andersen, K. H.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Bichler, M.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Bowman, C. N.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Brown, D. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Bunning, T. J.

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Caputo, R.

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

Carioscia, J. A.

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

Chikama, K.

Chiou, B.-S.

B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997).
[CrossRef]

Chu, T.-M. G.

T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).

Cramer, N. B.

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

Cross, T.

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Eckerlebe, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Ellabban, M. A.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Fally, M.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Geltenbort, P.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Guymon, C. A.

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

Halloran, J. W.

T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).

Hata, E.

Hidaka, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 .
[CrossRef] [PubMed]

Hoyle, C. E.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
[CrossRef]

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Ivanov, S.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Khan, S. A.

B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997).
[CrossRef]

Klepp, J.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

Kohlbrecher, J.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002).
[CrossRef]

Lee, T. Y.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
[CrossRef]

Lemmel, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Lloyd, P. F.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Lu, H.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

Manzin, G.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Mitsube, K.

Momose, K.

Moothanchery, M.

Nakamura, T.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle--polymer composite films,” Opt. Lett.33(15), 1750–1752 (2008).
[CrossRef] [PubMed]

Natarajan, L. V.

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Naydenova, I.

O’Brien, A. K.

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Ohmori, K.

Olenik, I. D.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Omura, K.

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010).
[CrossRef]

Ozawa, M

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Plonka-Spehr, C.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Pruner, C.

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Raj, R.

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

Rauch, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Reddy, S. K.

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

Roper, T.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
[CrossRef]

Rupp, R. A.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Stanbury, J. W.

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

Stansbury, J. W.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

Sukhov, A. V.

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

Sutherland, R. L.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Suzuki, N.

Tabirian, N. V.

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

Tago, A.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Toal, V.

Tomita, Y.

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1(2), 207–222 (2011), http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-2-207 .
[CrossRef]

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010).
[CrossRef]

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35(3), 396–398 (2010).
[CrossRef] [PubMed]

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
[CrossRef]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle--polymer composite films,” Opt. Lett.33(15), 1750–1752 (2008).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14(26), 12712–12719 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12712 .
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30(8), 839–841 (2005).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43(10), 2125–2129 (2004).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002).
[CrossRef]

Tondiglia, V. P.

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Umeton, C.

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

Ushakov, R. F.

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

White, T. J.

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

Wofford, J. M.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Yasui, S.

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 071103 (2006).

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73(10), 1337–1339 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947 (1969).

Chem. Phys. (1)

R. Caputo, A. V. Sukhov, N. V. Tabirian, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys.271(3), 323–335 (2001).
[CrossRef]

Dent. Mater. (2)

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater.21(12), 1129–1136 (2005).
[CrossRef] [PubMed]

J. A. Carioscia, H. Lu, J. W. Stanbury, and C. N. Bowman, “Thiol-ene oligomers as dental restorative materials,” Dent. Mater.21(12), 1137–1143 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

T.-M. G. Chu and J. W. Halloran, “Curing of highly loaded ceramic suspensions in acrylates,” J. Am. Chem. Soc.83, 2375–2380 (2000).

J. Appl. Phys. (1)

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107(2), 023107 (2010).
[CrossRef]

J. Polym. Sci. A Polym. Chem. (1)

N. B. Cramer, S. K. Reddy, H. Lu, T. Cross, R. Raj, and C. N. Bowman, “Thiol-ene photopolymerization of polymer-derived ceramic precursors,” J. Polym. Sci. A Polym. Chem.42(7), 1752–1757 (2004).
[CrossRef]

J. Polym. Sci., Part A: Polym. Chem. (1)

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Polym. Sci., Part A: Polym. Chem.42(21), 5301–5338 (2004).
[CrossRef]

Macromolecules (3)

T. J. White, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals,” Macromolecules40(4), 1112–1120 (2007).
[CrossRef]

N. B. Cramer, S. K. Reddy, A. K. O’Brien, and C. N. Bowman, “Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries,” Macromolecules36(21), 7964–7969 (2003).
[CrossRef]

B.-S. Chiou and S. A. Khan, “Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers,” Macromolecules30(23), 7322–7328 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. A (1)

J. Klepp, C. Pruner, Y. Tomita, C. Plonka-Spehr, P. Geltenbort, S. Ivanov, G. Manzin, K. H. Andersen, J. Kohlbrecher, M. A. Ellabban, and M. Fally, “Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings,” Phys. Rev. A84(1), 013621 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellabban, R. A. Rupp, M. Bichler, I. D. Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett.105(12), 123904 (2010).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.)47(12), 4411–4420 (2006).
[CrossRef]

Proc. SPIE (1)

Y. Tomita, E. Hata, K. Omura, and S. Yasui, “Low polymerization-shrinkage nanoparticle-polymer composite films based on thiol-ene photopolymerization for holographic data storage,” Proc. SPIE7722, 772229 (2010).
[CrossRef]

Other (4)

G. Odian, Principles of Polymerization, 4th ed. (Wiley, New York, 1994), Chap. 2.

E. Hata, S. Koda, K. Gotoh, and Y. Tomita, “Volume holographic recording in nanoparticle-polymer composites with reduced polymerization shrinkage,” in European Conference on Lasers and Electro-Optics/Quantum Electronics, Technical Digest (CD) (Optical Society of America, 2009), paper CC2.2-THU, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO/Europe-2009-CC2_2 .

Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology15, H. S. Nalwa ed., (American Scientific Publishers, Valencia, 2011), pp. 191–205, and references therein.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., (Springer, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structures of thiol-ene monomers. (a) dithiol and (b) TATATO.

Fig. 2
Fig. 2

Parametric dependences of thiol and ene functional group conversions for various thiol-ene formulations at different values for r (a) without and (b) with silica nanoparticle dispersion.

Fig. 3
Fig. 3

Parametric plots of α and Rp for various thiol-ene formulations at different values of r (a) without and (b) with silica nanoparticle dispersion.

Fig. 4
Fig. 4

Buildup dynamics of Δn for samples at different values of r.

Fig. 5
Fig. 5

(a) Dependences of Δnsat (○) and S (●) on r. (b) Dependence of σ on r.

Fig. 6
Fig. 6

Parametric dependence of σ on αc.

Tables (1)

Tables Icon

Table 1 Gel Point Determination for Samples without and with Silica Nanoparticle Dispersion

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α(t)= Q(t) Q T ,
α c = 1 ρ( f thiol 1 )( f ene 1 ) ,

Metrics