Abstract

As alternatives to conventional metals, new plasmonic materials offer many advantages in the rapidly growing fields of plasmonics and metamaterials. These advantages include low intrinsic loss, semiconductor-based design, compatibility with standard nanofabrication processes, tunability, and others. Transparent conducting oxides such as Al:ZnO, Ga:ZnO and indium-tin-oxide (ITO) enable many high-performance metamaterial devices operating in the near-IR. Transition-metal nitrides such as TiN or ZrN can be substitutes for conventional metals in the visible frequencies. In this paper we provide the details of fabrication and characterization of these new materials and discuss their suitability for a number of metamaterial and plasmonic applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
    [CrossRef] [PubMed]
  2. S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
    [CrossRef] [PubMed]
  3. J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
    [CrossRef] [PubMed]
  4. D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).
  5. E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
    [CrossRef] [PubMed]
  6. D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
    [CrossRef]
  7. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
    [CrossRef]
  8. D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
    [CrossRef]
  9. G. Naik and A. Boltasseva, “Ceramic plasmonic components for optical metamaterials,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).
  10. G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).
  11. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
    [CrossRef]
  12. N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).
  13. M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
    [CrossRef]
  14. K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
    [CrossRef]
  15. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008).
    [CrossRef]
  16. D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
    [CrossRef]
  17. K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
    [CrossRef]
  18. D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
    [CrossRef]
  19. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
    [CrossRef]
  20. M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
    [CrossRef]
  21. T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
    [CrossRef]
  22. B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
    [CrossRef]
  23. W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
    [CrossRef]
  24. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
    [CrossRef]
  25. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
    [CrossRef]
  26. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
    [CrossRef] [PubMed]
  27. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
    [CrossRef] [PubMed]
  28. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
    [CrossRef] [PubMed]
  29. A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008).
    [CrossRef]
  30. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  31. G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
    [CrossRef]
  32. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
    [CrossRef]
  33. V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008).
    [CrossRef] [PubMed]
  34. G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).
  35. E. Narimanov and A. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
    [CrossRef]
  36. H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
    [CrossRef]
  37. B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
    [CrossRef]
  38. A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
    [CrossRef]

2011 (5)

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

2010 (5)

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
[CrossRef] [PubMed]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

2009 (2)

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

E. Narimanov and A. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

2008 (5)

V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16, 1186–1195 (2008).
[CrossRef] [PubMed]

A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett.33, 43–45 (2008).
[CrossRef]

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008).
[CrossRef]

2007 (2)

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

2006 (3)

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
[CrossRef]

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

2002 (2)

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

1997 (2)

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
[CrossRef]

1985 (1)

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

1982 (1)

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Adams, D.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Alivisatos, A.

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

Andersson, J.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Aoki, T.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Ashcroft, N.

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
[CrossRef] [PubMed]

Bahoura, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Bang, J.

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

Barnakov, Y.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Barnett, S.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Bobb, D.

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

Boltasseva, A.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

G. Naik and A. Boltasseva, “Ceramic plasmonic components for optical metamaterials,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).

Cai, W.

Capon, F.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Cha, T.-H.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Chen, W.-C.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Chettiar, U.

Cho, H.-J.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Chrisey, D.

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cummer, S.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Diest, K.

E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
[CrossRef] [PubMed]

Drachev, V.

Ellmer, K.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008).
[CrossRef]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

Endrino, J.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Eng, L.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Ewers, T.

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
[CrossRef] [PubMed]

Gajek, M.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Galca, A.

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

Gavrilenko, A.

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

Gavrilenko, V.

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

Goodhue, W.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Greene, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Gu, L.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Guo, X.-J.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Haygarth, J.

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

Helm, M.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Horwat, D.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Horwitz, J.

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

Inampudi, S.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

Jacob, R.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Jain, P.

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

Jang, M.

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

Jang, S.-A.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Jeong, S.

B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
[CrossRef]

Johansson, B.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Jullien, M.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Justice, B.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Karlsson, B.

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

Kehr, S.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Kildishev, A.

Kim, D.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

Kim, H.

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

Kim, K.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
[CrossRef]

Kim, T.

B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
[CrossRef]

Kim, T.-K.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Kitur, J.

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Kuboi, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

Kuhta, N.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Lee, B.

B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
[CrossRef]

Lee, G.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Lee, M.

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

Lee, S.

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

Lee, W.

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

Lim, J.

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

Lim, K.-Y.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Lin, Y.-R.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Liu, Y.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

Livenere, J.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

Luther, J.

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

Ma, D.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
[CrossRef]

Manabe, H.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Martin, L.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Matsushita, T.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Mayy, M.

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

Mead, P.

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

Mermin, N.

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

Michihata, R.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Mientus, R.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008).
[CrossRef]

Minami, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

Misra, V.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Miyata, T.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

Mock, J.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Mori, I.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Mundle, R.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Myoung, J.

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

Naik, G.

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

G. Naik and A. Boltasseva, “Ceramic plasmonic components for optical metamaterials,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).

Naik, G. V.

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

Nakabayashi, I.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Nakamura, M.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Narimanov, E.

E. Narimanov and A. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

Noginov, M.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Ohtani, Y.

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

Okuda, M.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Park, D.-G.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Park, H.

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

Park, J. W.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Park, K.

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
[CrossRef]

Park, M.

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

Pedarnig, J.

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

Pendry, J.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Pierson, J.

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

Podolskiy, V.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Pradhan, A.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

Qadri, S.

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

Ramesh, R.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Rockett, A.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Roh, J.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Sands, T.

G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).

Schroeder, J.

G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).

Schurig, D.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Secu, M.

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

Seraphin, B.

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

Shalaev, V.

Shimshock, R.

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

Slocum, D.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Smith, D.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Suh, Y.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Sundgren, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Suzuki, A.

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

Tominaga, K.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Umezu, N.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Urbas, A.

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Ushiro, T.

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

Vangala, S.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Vella, J.

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Vlad, A.

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

von Ribbeck, H.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Wasserman, D.

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

Wenzel, M.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

Wu, S.-T.

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

Yang, C.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Yang, S.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Yeo, I.-S.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Yoon, H.-K.

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

Yoon, M.

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

Yu, P.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Yuan, H.

Zhang, X.

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Zhu, G.

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

Appl. Phys. Lett. (3)

D. Bobb, G. Zhu, M. Mayy, A. Gavrilenko, P. Mead, V. Gavrilenko, and M. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95, 151102 (2009).
[CrossRef]

M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99, 021101 (2011).
[CrossRef]

E. Narimanov and A. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett.95, 041106 (2009).
[CrossRef]

Appl. Surf. Sci. (2)

M. Lee, J. Lim, J. Bang, W. Lee, and J. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci.255, 3195–3200 (2008).
[CrossRef]

D. Kim, M. Park, H. Lee, and G. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci.253, 409–411 (2006).
[CrossRef]

J. Appl. Phys. (2)

K. Kim, K. Park, and D. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys.81, 7764–7772 (1997).
[CrossRef]

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys.90, 4725–4734 (2001).
[CrossRef]

J. Mater. Sci. Lett. (1)

M. Yoon, S. Lee, H. Park, H. Kim, and M. Jang, “Solid solubility limits of Ga and Al in ZnO,” J. Mater. Sci. Lett.21, 1703–1704 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (2)

D. Horwat, M. Jullien, F. Capon, J. Pierson, J. Andersson, and J. Endrino, “On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films,” J. Phys. D: Appl. Phys.43, 132003 (2010).
[CrossRef]

B. Lee, T. Kim, and S. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using RF magnetron sputtering,” J. Phys. D: Appl. Phys.39, 957–961 (2006).
[CrossRef]

J. Vac. Sci. Technol. A (2)

K. Tominaga, H. Manabe, N. Umezu, I. Mori, T. Ushiro, and I. Nakabayashi, “Film properties of ZnO: Al prepared by cosputtering of ZnO:Al and either Zn or Al targets,” J. Vac. Sci. Technol. A15, 1074–1079 (1997).
[CrossRef]

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A3, 303–307 (1985).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of very low mosaic spread on Al2O3,” Jpn. J. Appl. Phys.42, 208–212 (2003).
[CrossRef]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4, 795–808 (2010).
[CrossRef]

Metamaterials (1)

G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials5, 1–7 (2011).
[CrossRef]

Nano Lett. (1)

E. Feigenbaum, K. Diest, and H. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

S. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S. Yang, C. Yang, M. Wenzel, R. Jacob, H. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249–249 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Luther, P. Jain, T. Ewers, and A. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10, 361–366 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Scripta (1)

B. Karlsson, R. Shimshock, B. Seraphin, and J. Haygarth, “Optical properties of CVD-coated TiN, ZrN and HfN,” Phys. Scripta25, 775–779 (1982).
[CrossRef]

Phys. Status Solidi (RRL) (2)

T. Minami, T. Miyata, Y. Ohtani, and T. Kuboi, “Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment,” Phys. Status Solidi (RRL)1, R31–R33 (2007).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL)4, 295–297 (2010).
[CrossRef]

Science (4)

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308, 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007).
[CrossRef] [PubMed]

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006).
[CrossRef] [PubMed]

Thin Solid Films (4)

H. Kim, J. Horwitz, S. Qadri, and D. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films420, 107–111 (2002).
[CrossRef]

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries,” Thin Solid Films516, 5829–5835 (2008).
[CrossRef]

A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, “Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition,” Thin Solid Films517, 1478–1481 (2008).
[CrossRef]

A. Gālca, M. Secu, A. Vlad, and J. Pedarnig, “Optical properties of zinc oxide thin films doped with aluminum and lithium,” Thin Solid Films518, 4603–4606 (2010).
[CrossRef]

Other (6)

N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, 1976).

G. Naik and A. Boltasseva, “Ceramic plasmonic components for optical metamaterials,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

G. Zhu, L. Gu, J. Kitur, A. Urbas, J. Vella, and M. Noginov, “Organic materials with negative and controllable electric permittivity,” in “Quantum Electronics and Laser Science Conference” (Optical Society of America, 2011).

D. Slocum, S. Inampudi, D. Adams, S. Vangala, N. Kuhta, W. Goodhue, V. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Arxiv preprint arXiv:1103.6013 (2011).

D.-G. Park, T.-H. Cha, K.-Y. Lim, H.-J. Cho, T.-K. Kim, S.-A. Jang, Y.-S. Suh, V. Misra, I.-S. Yeo, J.-S. Roh, J. W. Park, and H.-K. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in “Electron Devices Meeting, 2001. IEDM Technical Digest. International,” (IEEE, 2001), pp. 30.6.1–30.6.4.
[CrossRef]

G. Naik, J. Schroeder, T. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible wavelengths,” Arxiv preprint arXiv:1011.4896 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left panel: Cross-over frequency (frequency at which real permittivity crosses zero) of Al:ZnO, ITO and Ga:ZnO films as a function of dopant concentration. Right panel: Drude-damping coefficient (γ) vs. dopant concentration. The films were deposited at 100 °C (AZO and ITO) and 50 °C (GZO) with oxygen partial pressures of 0.4 mTorr. The ablation energy was about 2 J/cm2.

Fig. 2
Fig. 2

Optical properties of GZO thin films with different thicknesses deposited on glass substrates. The films were deposited under identical conditions except for the duration of deposition.

Fig. 3
Fig. 3

Comparison of the optical properties of pulsed laser deposited TCO films with the smallest cross-over wavelengths. The films were deposited onto glass substrates at 100 °C (AZO and ITO) and 50 °C (GZO) with oxygen partial pressures of 0.4 mTorr.

Fig. 4
Fig. 4

Dielectric function retrieved from spectroscopic ellipsometry measurements on thin films of TiN, TaN, HfN and ZrN deposited on c-sapphire. The substrate temperature during deposition was 800 °C, and the chamber pressure was 5 mTorr. The flow ratios of N2:Ar were 6 sccm: 4sccm for TaN and TiN films and 2 sccm: 8 sccm for the rest. The sputter power was 150 W for Ta and Hf targets and 200 W for the rest.

Fig. 5
Fig. 5

Optical constants for ZrN films deposited on glass at different N2:Ar flow ratios (sccm/sccm). The sputtering pressure was held at 5 mTorr and the substrate temperature during deposition was 350 °C. While the ZrN film deposited in a nitrogen-rich ambient shows dielectric properties, the film deposited in a nitrogen-poor ambient shows metallic properties.

Fig. 6
Fig. 6

Comparison of optical properties of alternative plasmonic materials with those of conventional metals. Optical constants of low loss thin films of TiN, ZrN and TCOs (AZO, GZO and ITO) are plotted along with those of gold and silver taken from [30]. The arrows show the wavelength ranges in which nitrides and TCOs are respectively metallic. Panel a) shows that TCOs and nitrides have smaller negative permittivity values than those of metals, while b) compares losses and shows that losses in TCOs are many times smaller than those in either gold or silver. The losses in nitrides are slightly higher than metals due to inter-band transitions at the cross-over.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ɛ = ɛ + i ɛ = ɛ ω p 2 ω ( ω + i γ ) .

Metrics