Abstract

We report on the possibility of adopting active gain materials (specifically, made of fluorescent dyes) to mitigate the losses in a 3D periodic array of dielectric-core metallic-shell nanospheres. We find the modes with complex wavenumber in the structure, and describe the composite material in terms of homogenized effective permittivity, comparing results from modal analysis and Maxwell Garnett theory. We then design two metamaterials in which the epsilon-near-zero frequency region overlaps with the emission band of the adopted gain media, and we show that metamaterials with effective parameters with low losses are feasible, thanks to the gain materials. Even though fluorescent dyes embedded in the nanoshells’ dielectric cores are employed in this study, the formulation provided is general, and could account for the usage of other active materials, such as semiconductors and quantum dots.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  3. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
    [CrossRef] [PubMed]
  4. M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
    [CrossRef]
  5. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
    [CrossRef]
  6. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
    [CrossRef]
  7. G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
    [CrossRef]
  8. A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
    [CrossRef] [PubMed]
  9. J. A. Gordon and R. W. Ziolkowski, “CNP optical metamaterials,” Opt. Express16(9), 6692–6716 (2008).
    [CrossRef] [PubMed]
  10. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
    [CrossRef]
  11. S. Anantha Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
    [CrossRef]
  12. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  13. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
    [CrossRef]
  14. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
    [CrossRef]
  15. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
    [CrossRef] [PubMed]
  16. J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
    [CrossRef] [PubMed]
  17. A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19(13), 12688–12699 (2011).
    [CrossRef] [PubMed]
  18. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
    [CrossRef] [PubMed]
  19. A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
    [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. S. Steshenko and F. Capolino, “Single dipole approximation for modeling collections of nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.
  22. S. Campione and F. Capolino, “Linear and planar periodic arrays of metallic nanospheres: fabrication, optical properties and applications,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011), pp. 141–194.
  23. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEEE Publishing, 1999).
  24. A. Sihvola, “Mixing rules,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 9.1.
  25. M. G. Silveirinha, A. Alu, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” in URSI General Assembly (Chicago, IL, 2008).
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  27. L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, 1984), Chap. IX.
  28. K. Ohta and H. Ishida, “Comparison among several numerical integration methods for Kramers-Kronig transformation,” Appl. Spectrosc.42(6), 952–957 (1988).
    [CrossRef]
  29. K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B Condens. Matter44(15), 8301–8303 (1991).
    [CrossRef] [PubMed]
  30. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press and SPIE Press, 2009).
  31. K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C112(40), 15721–15728 (2008).
    [CrossRef]
  32. A. Vallecchi, M. Albani, and F. Capolino, “EM characterization of Raspberry-like nanocluster metamaterials,” in Antennas and Propagation Society International Symposium (Toronto, Canada, 2010).
  33. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965).
  34. A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28(6), 1446–1458 (2011).
    [CrossRef]
  35. S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes in three dimensional periodic arrays of plasmonic nanospheres,” Opt. Express (to be submitted).
  36. A. Siegman, Lasers (University Science Books, 1986).
  37. A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antenn. Propag.46(3), 334–340 (1998).
    [CrossRef]
  38. D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
    [CrossRef]
  39. G. Grönninger and A. Penzkofer, “Determination of energy and duration of picosecond light pulses by bleaching of dyes,” Opt. Quantum Electron.16(3), 225–233 (1984).
    [CrossRef]
  40. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express12(16), 3827–3833 (2004).
    [CrossRef] [PubMed]
  41. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
    [CrossRef]
  42. O. Svelto, Principles of Lasers (Kluwer Academic Plenum Publishers, 1998).
  43. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
    [CrossRef]
  44. D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
    [CrossRef]
  45. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
    [CrossRef] [PubMed]
  46. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14(4), 1557–1567 (2006).
    [CrossRef] [PubMed]
  47. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
    [CrossRef]
  48. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett.8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  49. P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
    [CrossRef]
  50. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
    [CrossRef] [PubMed]
  51. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
    [CrossRef]
  52. S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
    [CrossRef]
  53. S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
    [CrossRef]

2011 (6)

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
[CrossRef]

A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28(6), 1446–1458 (2011).
[CrossRef]

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

2010 (5)

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
[CrossRef] [PubMed]

2008 (3)

J. A. Gordon and R. W. Ziolkowski, “CNP optical metamaterials,” Opt. Express16(9), 6692–6716 (2008).
[CrossRef] [PubMed]

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C112(40), 15721–15728 (2008).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

2007 (2)

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

2006 (3)

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14(4), 1557–1567 (2006).
[CrossRef] [PubMed]

2005 (1)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

2004 (3)

S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express12(16), 3827–3833 (2004).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

2003 (2)

S. Anantha Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
[CrossRef] [PubMed]

2000 (2)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

1998 (1)

A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antenn. Propag.46(3), 334–340 (1998).
[CrossRef]

1991 (1)

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B Condens. Matter44(15), 8301–8303 (1991).
[CrossRef] [PubMed]

1988 (2)

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

K. Ohta and H. Ishida, “Comparison among several numerical integration methods for Kramers-Kronig transformation,” Appl. Spectrosc.42(6), 952–957 (1988).
[CrossRef]

1984 (1)

G. Grönninger and A. Penzkofer, “Determination of energy and duration of picosecond light pulses by bleaching of dyes,” Opt. Quantum Electron.16(3), 225–233 (1984).
[CrossRef]

1983 (1)

1979 (1)

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

Alù, A.

Anantha Ramakrishna, S.

S. Anantha Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

Bahoura, M.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Bartolino, R.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

Bertholdo, R.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

Boardman, A. D.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Boloten, M.

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

Campione, S.

A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28(6), 1446–1458 (2011).
[CrossRef]

S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
[CrossRef]

Capolino, F.

A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres,” J. Opt. Soc. Am. B28(6), 1446–1458 (2011).
[CrossRef]

S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
[CrossRef]

Chang, S.-H.

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
[CrossRef] [PubMed]

Chin, S. L.

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Cormier, M.

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

de Araújo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

De Luca, A.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

Engheta, N.

Fang, A.

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

Faubert, D.

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

Ferrie, M.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

Fructos, A. L.

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

Gordon, J. A.

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Grimalsky, V. V.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Grönninger, G.

G. Grönninger and A. Penzkofer, “Determination of energy and duration of picosecond light pulses by bleaching of dyes,” Opt. Quantum Electron.16(3), 225–233 (1984).
[CrossRef]

Gryczynski, I.

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

Gryczynski, Z.

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

Grzelczak, M. P.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Hamm, J. M.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Hess, O.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

Huang, Z.

Ishida, H.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Koschny, T.

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

Koshevaya, S. V.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

La Deda, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

Lapine, M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

Litchinitser, N. M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Liz-Marzán, L. M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Maciel, G. S.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
[CrossRef] [PubMed]

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Malnev, V. N.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

Meier, B.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Meier, M.

Mesa, F.

Messaddeq, Y.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nagra, A. S.

A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antenn. Propag.46(3), 334–340 (1998).
[CrossRef]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Noginov, M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Nordlander, P.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

Ohta, K.

Pastoriza-Santos, I.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Peiponen, K. E.

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B Condens. Matter44(15), 8301–8303 (1991).
[CrossRef] [PubMed]

Pendry, J.

S. Anantha Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Penzkofer, A.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

G. Grönninger and A. Penzkofer, “Determination of energy and duration of picosecond light pulses by bleaching of dyes,” Opt. Quantum Electron.16(3), 225–233 (1984).
[CrossRef]

Pusch, A.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Rapoport, Y. G.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Ravaine, S.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

Ribeiro, S. J. L.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Rojas, G. E.

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Salandrino, A.

Sarychev, A. K.

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
[CrossRef] [PubMed]

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Shalaev, V. M.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

Sivan, Y.

Small, C.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

Spangler, W.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Sperber, P.

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Steshenko, S.

S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Strangi, G.

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Striccoli, M.

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

Taflove, A.

Tanabe, K.

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C112(40), 15721–15728 (2008).
[CrossRef]

Tartakovsky, G.

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

Tsakmakidis, K. L.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Vallecchi, A.

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
[CrossRef]

Vartiainen, E. M.

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B Condens. Matter44(15), 8301–8303 (1991).
[CrossRef] [PubMed]

Wegener, M.

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

Wokaun, A.

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
[CrossRef] [PubMed]

Wuestner, S.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express17(26), 24060–24074 (2009).
[CrossRef] [PubMed]

York, R. A.

A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antenn. Propag.46(3), 334–340 (1998).
[CrossRef]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Ziolkowski, R. W.

ACS Nano (2)

A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, “Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses,” ACS Nano5(7), 5823–5829 (2011).
[CrossRef] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86(3), 455–460 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett.85(21), 5040–5042 (2004).
[CrossRef]

G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in metamaterials,” Appl. Phys. Lett.98(25), 251912 (2011).
[CrossRef]

Appl. Spectrosc. (1)

Can. J. Phys. (1)

D. Faubert, S. L. Chin, M. Cormier, and M. Boloten, “Numerical analysis of short laser pulse superposition in a fluorescent dye medium,” Can. J. Phys.57(2), 160–167 (1979).
[CrossRef]

Chem. Phys. Lett. (1)

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antenn. Propag.46(3), 334–340 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, R. Bertholdo, Y. Messaddeq, and S. J. L. Ribeiro, “Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G,” J. Non-Cryst. Solids351(21-23), 1846–1849 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell-bright particle,” J. Phys. Chem. B110(18), 8986–8991 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C112(40), 15721–15728 (2008).
[CrossRef]

Laser Photon. Rev. (1)

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev.5(2), 287–307 (2011).
[CrossRef]

Nat. Photonics (3)

M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics4(7), 457–461 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010).
[CrossRef]

Nature (1)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye-laser generators and amplifiers,” Opt. Quantum Electron.20(5), 395–431 (1988).
[CrossRef]

G. Grönninger and A. Penzkofer, “Determination of energy and duration of picosecond light pulses by bleaching of dyes,” Opt. Quantum Electron.16(3), 225–233 (1984).
[CrossRef]

Photochem. Photobiol. (2)

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol.75(4), 327–334 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (5)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B62(23), 15299–15302 (2000).
[CrossRef]

A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79(24), 241104 (2009).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B75(8), 085436 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

S. Anantha Ramakrishna and J. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B67(20), 201101 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B Condens. Matter44(15), 8301–8303 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105(12), 127401 (2010).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE7757, 775738 (2010).
[CrossRef]

S. Campione, S. Steshenko, and F. Capolino, “Description and characterization of the complex modes in a linear chain of gold metal nanospheres,” Proc. SPIE7946, 79461V (2011).
[CrossRef]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (13)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. Steshenko and F. Capolino, “Single dipole approximation for modeling collections of nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.

S. Campione and F. Capolino, “Linear and planar periodic arrays of metallic nanospheres: fabrication, optical properties and applications,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011), pp. 141–194.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEEE Publishing, 1999).

A. Sihvola, “Mixing rules,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 9.1.

M. G. Silveirinha, A. Alu, B. Edwards, and N. Engheta, “Overview of theory and applications of epsilon-near-zero materials,” in URSI General Assembly (Chicago, IL, 2008).

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press and SPIE Press, 2009).

O. Svelto, Principles of Lasers (Kluwer Academic Plenum Publishers, 1998).

L. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, 1984), Chap. IX.

A. Vallecchi, M. Albani, and F. Capolino, “EM characterization of Raspberry-like nanocluster metamaterials,” in Antennas and Propagation Society International Symposium (Toronto, Canada, 2010).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965).

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes in three dimensional periodic arrays of plasmonic nanospheres,” Opt. Express (to be submitted).

A. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

3D periodic array of dielectric-core metallic-shell nanospheres embedded in a homogeneous medium with permittivity ε h . The core radius is r1, with permittivity ε1; the shell outer radius is r2, with permittivity ε2; a, b and c are the periodicities along x-, y- and z-direction, respectively. (a) The shell is made of silver. (b) The shell is made of gold.

Fig. 2
Fig. 2

Wavenumber dispersion diagram versus frequency for T-pol for the structure in Fig. 1(a), using the polarizability in Eq. (3). (a) Real part and (b) imaginary part of the wavenumber k z = β z +i α z , for lossy, lossless and loss-compensated cases.

Fig. 3
Fig. 3

(a) Real part and (b) imaginary part of the effective relative permittivity for the structure in Fig. 1(a) computed in three different ways: by Maxwell Garnett, by using the polarizability in (2) (MG – CM); the polarizability in Eq. (3) (MG – Mie); and mode analysis.

Fig. 4
Fig. 4

(a) Real and (b) imaginary parts of the relative effective permittivity for the case in Fig. 3, obtained from mode analysis with polarizability in Eq. (3), in the epsilon-near-zero region around 526 THz.

Fig. 5
Fig. 5

Wavenumber dispersion diagram versus frequency for T-pol for the structure in Fig. 1(b), using the polarizability in Eq. (3). (a) Real part and (b) imaginary part of the wavenumber k z = β z +i α z , for lossy, lossless and loss compensated cases.

Fig. 6
Fig. 6

(a) Real part and (b) imaginary part of the effective relative permittivity for the structure in Fig. 1(b) computed in three different ways: by Maxwell Garnett, by using the polarizability in Eq. (2) (MG – CM); the polarizability in Eq. (3) (MG – Mie); and mode analysis.

Fig. 7
Fig. 7

(a) Real and (b) imaginary parts of the relative effective permittivity for the case in Fig. 5, obtained from mode analysis with polarizability in Eq. (3), in the epsilon-near-zero region around 421 THz.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

p= α ee E loc ,
α ee 1 = 1 4π ε h ε 0 r 2 3 ( ε 2 +2 ε h )( ε 1 +2 ε 2 )+2β( ε 2 ε h )( ε 1 ε 2 ) ( ε 2 ε h )( ε 1 +2 ε 2 )+β(2 ε 2 + ε h )( ε 1 ε 2 ) i k 3 6π ε h ε 0 ,
α ee = 6πi ε h ε 0 k 3 ψ 1 (k r 2 )A m 2 ψ 1 (k r 2 )B ξ 1 (k r 2 )A m 2 ξ 1 (k r 2 )B ,A= ψ 1 ( m 2 k r 2 )C χ 1 ( m 2 k r 2 ),
B= ψ 1 ( m 2 k r 2 )C χ 1 ( m 2 k r 2 ),C= m 2 ψ 1 ( m 2 k r 1 ) ψ 1 ( m 1 k r 1 ) m 1 ψ 1 ( m 2 k r 1 ) ψ 1 ( m 1 k r 1 ) m 2 χ 1 ( m 2 k r 1 ) ψ 1 ( m 1 k r 1 ) m 1 χ 1 ( m 2 k r 1 ) ψ 1 ( m 1 k r 1 ) ,
ε m = ε ω p 2 ω( ω+iγ ) ,
A _ ( k B ) p 0 = α ee E inc ( r 0 ),   A _ ( k B )= I _ α ee G _ ( r 0 , r 0 , k B ),
ε eff = ε h + ε h N D 1 [ ε 0 ε h α ee 1 +i k 3 6π ] 1 3 ,      μ eff =1+ 1 N D 1 [ α mm 1 +i k 3 6π ] 1 3 ,
n eff = k z k 0 ,
2 t 2 P e ( r,t )+Δ ω a t P e ( r,t )+ ω a 2 P e ( r,t )= σ a ΔN( r,t )E( r,t ),
P e ( r )= ε 0 χ e E( r ), χ e = 1 ε 0 σ a ΔN ω 2 +iΔ ω a ω ω a 2 .
D( r )= ε 0 E( r )+ P r ( r )+ P e ( r )= ε 0 ε r E( r )+ P e ( r ),
ε g = ε 0 ε r + σ a ΔN ω 2 +iΔ ω a ω ω a 2
ΔN= ( τ 21 τ 10 ) Γ pump 1+( τ 32 + τ 21 + τ 10 ) Γ pump N ¯ 0
ε g = ε 0 ε r + σ a ω 2 +iΔ ω a ω ω a 2 ( τ 21 τ 10 ) Γ pump 1+( τ 32 + τ 21 + τ 10 ) Γ pump N ¯ 0

Metrics