Abstract

Three-dimensional (3D) space-selective crystallization by femtosecond laser irradiation was investigated in LaBGeO5 glass. Heat modification could be induced space-selectively, but crystal nucleation showed an unexpected sensitivity to focal depth. Laser-induced heat modification profiles were inspected with optical microscopy and Raman spectroscopy in order to explain this phenomenon. We propose a mechanism based on heterogeneous nucleation at the surface of laser-induced defects and suggest strategies for achieving space-selective crystal nucleation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
    [CrossRef]
  2. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30, 1060–1062 (2005).
    [CrossRef] [PubMed]
  3. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
    [CrossRef]
  4. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13, 4708–4716 (2005).
    [CrossRef] [PubMed]
  5. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
    [CrossRef] [PubMed]
  6. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
    [CrossRef]
  7. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
    [CrossRef]
  8. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
    [CrossRef]
  9. V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
    [CrossRef]
  10. V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).
  11. M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
    [CrossRef]
  12. I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
    [CrossRef]
  13. D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
    [CrossRef]
  14. E. Zanotto, “Surface crystallization kinetics in soda–lime–silica glasses,” J. Non-Cryst. Solids129, 183–190 (1991).
    [CrossRef]
  15. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
    [CrossRef]

2010 (1)

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

2009 (2)

2008 (1)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

2007 (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

2005 (3)

2004 (2)

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

2003 (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

2000 (1)

D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
[CrossRef]

1999 (1)

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

1994 (1)

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

1991 (1)

E. Zanotto, “Surface crystallization kinetics in soda–lime–silica glasses,” J. Non-Cryst. Solids129, 183–190 (1991).
[CrossRef]

Arai, A. Y.

Araki, R.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

Baskov, P

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Bovatsek, J.

Califano, V.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Cao, S.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Champagnon, B.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Dai, Y.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Dierolf, V.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Eaton, S. M.

Fanelli, E.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Fu, D.

D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
[CrossRef]

Fujimoto, J. G.

Fujita, K.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Gregora, I.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Gupta, P.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Herman, P. R.

Hirao, K.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

Hrubá, I.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Ippen, E. P.

Ishikawa, K.

D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
[CrossRef]

Ivannikov, D.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Jain, H.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Kamba, S.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Komandin, G.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Kowalevicz, A. M.

Kratochvilova-Hruba, I.

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

Liu, Y.

Lopatina, E. V.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

Lu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Ma, H.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Menschikova, A.

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

Minoshima, K.

Miura, K.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

Pernice, P.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Petzelt, J.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Qian, B.

Qiu, J.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Sakakura, M.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Sakharov, V.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Sarkisov, P. D.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Shah, L.

Sharma, V.

Shimizu, M.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Shimotsuma, Y.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Sigaev, V.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Sigaev, V. N.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

Smirnov, M.

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

Stefanovich, S. Y.

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

Stone, A.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Stone, G.

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17, 23284–23289 (2009).
[CrossRef]

Strukov, B.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Suzuki, H.

D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
[CrossRef]

Volkov, A.

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Yonesaki, Y.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

Yoshino, F.

Yu, B.

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Zakharkin, D.

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Zanotto, E.

E. Zanotto, “Surface crystallization kinetics in soda–lime–silica glasses,” J. Non-Cryst. Solids129, 183–190 (1991).
[CrossRef]

Zhang, H.

Zhu, B.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett.34, 136–138 (2009).
[CrossRef] [PubMed]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

Zikmund, Z.

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Appl. Phys. A (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A76, 351–354 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90, 181109-1–181109-3 (2007).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93, 231112-1–231112-3 (2008).
[CrossRef]

Glass Phys. and Chem. (1)

V. N. Sigaev, S. Y. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, “Lanthanum borogermanate glasses and crystallization of stillwellite LaBGeO5: I. Specific features of synthesis and physicochemical properties of glasses,” Glass Phys. and Chem.20, 392–397 (1994).

J. Non-Cryst. Solids (3)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids351, 885–892 (2005).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356, 3059–3065 (2010).
[CrossRef]

E. Zanotto, “Surface crystallization kinetics in soda–lime–silica glasses,” J. Non-Cryst. Solids129, 183–190 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. (1)

V. Califano, B. Champagnon, E. Fanelli, P. Pernice, V. Sigaev, D. Zakharkin, V. Sakharov, and P Baskov, “Anisotropy in extruded lanthanum borogermanate glasses? Structural study by Raman spectroscopy,” Philos. Mag.84, 1639–1644 (2004).
[CrossRef]

Phys. Rev. B (1)

D. Fu, H. Suzuki, and K. Ishikawa, “Size-induced phase transition in PbTiO3 nanocrystals: Raman scattering study,” Phys. Rev. B62, 3125–3129 (2000).
[CrossRef]

Phys. Stat. Sol. (b) (1)

M. Smirnov, A. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, “Lattice dynamics and phase transition in LaBGeO5,” Phys. Stat. Sol. (b)241, 1017–1025 (2004).
[CrossRef]

Phys. Status Solidi B (1)

I. Hrubá, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, “Optical phonons and ferroelectric phase transition in the LaBGeO5 crystal,” Phys. Status Solidi B214, 423–439 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical micrographs of heat modifications produced by 10 seconds of irradiation at increasing focal depths from 100 to 400 μm, exhibiting structural defects (arrows).

Fig. 2
Fig. 2

Optical micrographs of crystallization time progression. Defects (solid black arrows) appear before the crystal (solid white arrows), an intermediate phase [7] which grows upward inside the region enclosed by an inner boundary (white dashed arrows).

Fig. 3
Fig. 3

Polarized optical micrographs before (left) and after crystallization (right). In the highlighted region, the defects (solid black arrows) are seen to occur just outside the inner boundary (dashed white arrows). The bright circles (dashed black arrow) are due to nearby cracks. After crystallization, strong birefringence is seen (solid white arrow).

Fig. 4
Fig. 4

Raman spectra collected from 7 different regions of the heat modification and scaled to normalize their intensity at high frequency. Spectral windows from 100–440 and 440–660 cm−1 indicate ranges used for mapping. Inset (top): Map of average intensity in Window 2 before normalizing spectra. Darker pixels indicate lower average intensity, numbers indicate where spectra were collected. Inset (bottom): Map of position of the centroid of the area under the curve in Window 1. Darker pixels indicate stronger low frequency peaks.

Fig. 5
Fig. 5

Optical micrographs of heat modifications produced by 10 seconds of irradiation at 100 μm depth with increasing sample temperatures.

Metrics