Abstract

We present dynamic membrane projection lithography as a method to create three dimensional metallic traces in hemispherical cavities. The technique entails directional evaporation through perforations in a membrane covering a hemispherical unit-cell cavity. The sample is positioned on a rotating stage and tilted with respect to the incident evaporated beam, such that the traces are deposited on the interior face of the cavity. A simple self-aligned version and a more general two-step fabrication version are presented. Furthermore, by incorporating a fixed shutter, both closed-loop and split-loop structures are demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  5. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
    [CrossRef] [PubMed]
  6. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science330(6011), 1633–1634 (2010).
    [CrossRef] [PubMed]
  7. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  9. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
    [CrossRef] [PubMed]
  10. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.)17(10), 1276–1281 (2005).
    [CrossRef]
  11. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
    [CrossRef] [PubMed]
  12. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5053–5057 (2010).
    [CrossRef] [PubMed]
  13. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3171–3175 (2010).
    [CrossRef] [PubMed]
  14. M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst.13(6), 956–962 (2004).
    [CrossRef]
  15. N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng.16(8), 1606–1613 (2006).
    [CrossRef]
  16. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10(7), 2511–2518 (2010).
    [CrossRef] [PubMed]
  17. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]

Other (17)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science330(6011), 1633–1634 (2010).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. (Deerfield Beach Fla.)17(10), 1276–1281 (2005).
[CrossRef]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
[CrossRef] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5053–5057 (2010).
[CrossRef] [PubMed]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. (Deerfield Beach Fla.)22(29), 3171–3175 (2010).
[CrossRef] [PubMed]

M. Graff, S. K. Mohanty, E. Moss, and A. B. Frazier, “Microstenciling: a generic technology for microscale patterning of vapor deposited materials,” J. Microelectromech. Syst.13(6), 956–962 (2004).
[CrossRef]

N. Takano, L. M. Doeswijk, M. A. F. Boogaart, J. Auerswald, H. F. Knapp, O. Dubochet, T. Hessler, and J. Brugger, “Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems,” J. Micromech. Microeng.16(8), 1606–1613 (2006).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett.10(7), 2511–2518 (2010).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (88 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sequence of schematic images depicting the two-step process flow to create the hemispherical cavity. A) Starting from a substrate B) Deposit a barrier material; C) Pattern a small hole; D) Create cavity using an isotropic etch (barrier is translucent in this pane); E) Remove Barrier/deposit and planarize with a backfill material; F) Deposit membrane material; G) Pattern membrane material with deposition apertures; H) Remove backfill material; I) Perform rotated directional evaporation (see Media 1).

Fig. 2
Fig. 2

Sequence of schematic images depicting the rotated directional evaporation to create traces using dynamic membrane projection lithography.

Fig. 3
Fig. 3

Schematic image showing the tilted rotation stage and normally incident metallic evaporation.

Fig. 4
Fig. 4

Schematic showing A) a sequence of images during evaporation using the tilted rotation stage and B) inclusion of a fixed shutter to create gaps in the deposited loops. Inset images show representative final structures.

Fig. 5
Fig. 5

Geometry for designing antennas using dynamic membrane projection lithography.

Fig. 6
Fig. 6

A) Top down plot of the deposited traces from a membrane with 3 perforations near the center of a 1.8 μm radius bowl and 20 degree tilted evaporation. B) Cross section view of unit-cell showing a nearly planar antenna. C) Top down plot of the deposited traces from a membrane with 3 perforations near the rim of a 1.8 μm radius bowl and 45 degree tilted evaporation. D) Cross section view of unit-cell containing a fully three-dimensional trace with significant out of plane current flow.

Fig. 7
Fig. 7

A) Layout of one-, two-, three- and four-perforation e-beam written patterns. B) Top-down SEM image of a portion of a 5mm x 5mm region containing four-loop unit-cells.

Fig. 8
Fig. 8

A–C) Top Down SEM images of 1, 2 and 3-Loop antennas created using the configuration shown in Fig. 4A. D–F) Top Down SEM images of 1, 2 and 3-Loop antennas with gaps created using the shutter configuration shown in Fig. 4B.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R 2 = ( x x 0 ) 2 + ( y y 0 ) 2 + ( z z 0 ) 2 ,
x= x 1 +At;y= y 1 +Bt;z= z 1 +Ct;
A=sinφcosθ;B=sinφcosθ;C=cosφ;

Metrics