Abstract

We determine the linear birefringence magnitude, i.e. the difference between refractive indexes along the extraordinary and ordinary axes, of artificial uniaxial DNA crystals assembled with the so-called DNA tile approach. Based on the ellipsometric measurements, the birefringence magnitude is between 0.001 and 0.0018 in the visible and near infrared range. Besides being of fundamental interest, the optical properties of DNA crystals are crucial in the design of novel photonic nanostuctures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
    [CrossRef]
  2. J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
    [CrossRef] [PubMed]
  3. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
    [CrossRef]
  4. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
    [CrossRef]
  5. C. C. DuFort and B. Dragnea, “Bio-enabled synthesis of metamaterials,” Annu. Rev. Phys. Chem. 61, 323–344 (2010).
    [CrossRef] [PubMed]
  6. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
    [CrossRef]
  7. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
    [CrossRef] [PubMed]
  8. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1986).
  9. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990).
  10. Ellipsometer manualGuide to Using WVASE32 (J.A. Woollam Co., Inc.,).

2010

C. C. DuFort and B. Dragnea, “Bio-enabled synthesis of metamaterials,” Annu. Rev. Phys. Chem. 61, 323–344 (2010).
[CrossRef] [PubMed]

2009

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

2008

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

2006

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

2000

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

1998

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Alivisatos, A. P.

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Birktoft, J. J.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1986).

Chen, Y.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Constantinou, P. E.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Dragnea, B.

C. C. DuFort and B. Dragnea, “Bio-enabled synthesis of metamaterials,” Annu. Rev. Phys. Chem. 61, 323–344 (2010).
[CrossRef] [PubMed]

DuFort, C. C.

C. C. DuFort and B. Dragnea, “Bio-enabled synthesis of metamaterials,” Annu. Rev. Phys. Chem. 61, 323–344 (2010).
[CrossRef] [PubMed]

Gang, O.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

Ginell, S. L.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Kiehl, R. A.

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990).

Lazarides, A. A.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Lee, B.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

Letsinger, R. L.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Lewis, J. W.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990).

Liu, F.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Lytton-Jean, A. K. R.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

Mao, C.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Maye, M. M.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

Micheel, C.

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Mirkin, C. A.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Mucic, R. C.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Nykypanchuk, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

Park, S. Y.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

Randall, C. E.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990).

Schatz, G. C.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Seeman, N. C.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Sha, R.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Storhoff, J. J.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

van der Lelie, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

Wang, T.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Weigand, S.

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

Wenzler, L. A.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Winfree, E.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1986).

Zheng, J.

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

C. C. DuFort and B. Dragnea, “Bio-enabled synthesis of metamaterials,” Annu. Rev. Phys. Chem. 61, 323–344 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” J. Am. Chem. Soc. 122, 4640–4650 (2000).
[CrossRef]

Nano Lett.

J. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman, “Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs,” Nano Lett. 6, 1502–1502 (2006).
[CrossRef] [PubMed]

Nature

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539–544 (1998).
[CrossRef] [PubMed]

Nature Lett.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature Lett. 451, 549–552 (2008).
[CrossRef]

S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature Lett. 451, 553–556 (2008).
[CrossRef]

J. Zheng, J. J. Birktoft, Y. Chen, T. Wang, R. Sha, P. E. Constantinou, S. L. Ginell, C. Mao, and N. C. Seeman, “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature Lett. 461, 74–77 (2009).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1986).

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, 1990).

Ellipsometer manualGuide to Using WVASE32 (J.A. Woollam Co., Inc.,).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Artificial DNA crystal lattice. The rhombohedral unit cell, indicated by the red box, has an edge length of 69.22 Å. The red-colored DNA strands indicate the tensegrity triangle.

Fig. 2
Fig. 2

Setup for the polarization dependent transmission measurements. Incoming polarization state (yellow arrow on the left-hand side) was kept linear while the polarization azimuth angle, P, was varied between 10–160 deg by steps of 30 deg. In the inset, the optical microscope image of an artificial DNA crystal inside a mother liquid drop is shown. The length scale is approximated.

Fig. 3
Fig. 3

Birefringence magnitude, Δn, of the DNA crystal for different polarization azimuth angles.

Fig. 4
Fig. 4

Measured (solid line) and modeled (dashed line) Fourier coefficients for the detector signal. Colors indicate input beam polarization azimuth angles.

Fig. 5
Fig. 5

Measured (solid line) and modeled (dashed line) ellipsometric parameters ψ and δ. Colors indicate input beam polarization azimuth angles. In case of δ the theoretical results for 10° and 100° follow the same line. The same is valid also for 40° and 130°, and 70° and 160°.

Fig. 6
Fig. 6

Birefringence magnitude for 10 deg azimuth in case of minimum (38 μm), estimated (48 μm), and maximum (58 μm) crystal thickness.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

J = ( t pp t ps t sp t ss ) ,
t pp = t e cos 2 θ + t o sin 2 θ ,
t ss = t e sin 2 θ + t o cos 2 θ
t ps = t sp = ( t e t o ) cos θ sin θ .
E d = ( 1 0 0 0 ) ( cos A sin A sin A cos A ) J ( cos P sin P sin P cos P ) ( 1 0 ) ,
I α cos ( 2 A ) + β sin ( 2 A ) + 1 ,
α = ( | t pp | 2 | t sp | 2 ) cos 2 P + ( | t ps | 2 | t ss | 2 ) sin 2 P + 2 [ ( t pp t ps * ) ( t ss t sp * ) ] sin P cos P ( | t pp | 2 + | t sp | 2 ) cos 2 P + ( | t ss | 2 + | t ps | 2 ) sin 2 P + 2 [ ( t pp t ps * ) + ( t ss t sp * ) ] sin P cos P
β = 2 { ( t pp t sp * ) cos 2 P + ( t ss t ps * ) sin 2 P + [ ( t pp t ss * ) + ( t sp t ps * ) ] sin P cos P } ( | t pp | 2 + | t sp | 2 ) cos 2 P + ( | t ss | 2 + | t ps | 2 ) sin 2 P + 2 [ ( t pp t ps * ) + ( t ss t sp * ) ] sin P cos P .
tan ψ = 1 + α 1 α | tan P | ,
cos δ = β 1 α 2 tan P | tan P | .
tan ψ e i δ = E p e i φ p E s e i φ s ,

Metrics