Abstract

Electromagnetic external cloak is an important device, which can make an object outside its domain invisible, meanwhile the object can exchange information with the outer region. Based on optical transformation method, we design a simplified cylindrical electromagnetic external cloak with only axial material parameter spatially variant in this paper. The general expressions of material parameters are derived, and then the performance of the external cloak is simulated using the full wave simulations. The advantage of this external cloak is that transverse material parameters are constants, which makes it easier to realize with two-dimensional metamaterials. Besides, the effects of loss and perturbations of parameters on the performance of the cloak are also investigated. This work provides a feasible way for the fabrication of the metamaterial-assisted external cloak.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  6. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  8. P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
    [CrossRef]
  9. R. B. Hwang and C. Y. Chin, “Broadband cloaking using composite dielectrics,” AIP Advances 1(1), 012112 (2011).
    [CrossRef]
  10. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
    [CrossRef]
  11. W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
    [CrossRef]
  12. D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
    [CrossRef]
  13. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
    [CrossRef] [PubMed]
  14. M. Huang and J. J. Yang, Wave Propagation (Intech Press, 2011), Chap. 2.
  15. J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:.
    [CrossRef]
  16. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
    [CrossRef]
  17. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
    [CrossRef] [PubMed]
  18. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
    [CrossRef]
  19. X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
    [CrossRef]
  20. T. Y. Chen and C. N. Weng, “Invisibility cloak with a twin cavity,” Opt. Express 17(10), 8614–8620 (2009).
    [CrossRef] [PubMed]
  21. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  22. C. F. Yang, J. Yang, M. Huang, Z. Xiao, and J. H. Peng, “An external cloak with arbitrary cross section based on complementary medium and coordinate transformation,” Opt. Express 19(2), 1147–1157 (2011).
    [CrossRef] [PubMed]
  23. W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
    [CrossRef]

2011

2010

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[CrossRef]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

2009

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

T. Y. Chen and C. N. Weng, “Invisibility cloak with a twin cavity,” Opt. Express 17(10), 8614–8620 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

2008

C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008).
[CrossRef] [PubMed]

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

2007

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Alitalo, P.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cai, W. S.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

Chan, C. T.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Chen, H. Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Chen, T. Y.

Cheng, M.

J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:.
[CrossRef]

Cheng, Q.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

Chin, C. Y.

R. B. Hwang and C. Y. Chin, “Broadband cloaking using composite dielectrics,” AIP Advances 1(1), 012112 (2011).
[CrossRef]

Chin, J. Y.

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Cui, T. J.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Cummer, S. A.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Huang, M.

Hwang, R. B.

R. B. Hwang and C. Y. Chin, “Broadband cloaking using composite dielectrics,” AIP Advances 1(1), 012112 (2011).
[CrossRef]

Jiang, W. X.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Kwon, D. H.

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[CrossRef]

Lai, Y.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, C.

Li, F.

Li, T. H.

J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:.
[CrossRef]

Lin, X. Q.

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Ma, H.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Ma, H. F.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

Milton, G. W.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Peng, J. H.

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Qu, S. B.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Ranvier, S.

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Tretyakov, S.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

Vehmas, J.

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

Wang, J. F.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Wang, X. H.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Weng, C. N.

Werner, D. H.

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[CrossRef]

Wu, X.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Xiao, Z.

Xu, Z.

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

Yang, C. F.

Yang, J.

Yang, J. J.

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:.
[CrossRef]

Yu, G. X.

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Zhang, Z. Q.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

AIP Advances

R. B. Hwang and C. Y. Chin, “Broadband cloaking using composite dielectrics,” AIP Advances 1(1), 012112 (2011).
[CrossRef]

Appl. Phys. Lett.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

J. J. Yang, T. H. Li, M. Huang, and M. Cheng, “Transparent device with homogeneous material parameters,” Appl. Phys., A Mater. Sci. Process. , doi:.
[CrossRef]

IEEE Antennas Propag. Mag.

D. H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and applications,” IEEE Antennas Propag. Mag. 52(1), 24–46 (2010).
[CrossRef]

J. Appl. Phys.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107(3), 034911 (2010).
[CrossRef]

X. H. Wang, S. B. Qu, X. Wu, J. F. Wang, Z. Xu, and H. Ma, “Area-transformation method for designing invisible cloaks,” J. Appl. Phys. 108(7), 073108 (2010).
[CrossRef]

J. Phys. D Appl. Phys.

W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily elliptical–cylindrical invisible cloaking,” J. Phys. D Appl. Phys. 41(8), 085504 (2008).
[CrossRef]

Mater. Today

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[CrossRef]

W. X. Jiang, J. Y. Chin, and T. J. Cui, “Anisotropic metamaterial devices,” Mater. Today 12(12), 26–33 (2009).
[CrossRef]

Metamaterials (Amst.)

P. Alitalo, S. Ranvier, J. Vehmas, and S. Tretyakov, “A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects,” Metamaterials (Amst.) 2(4), 206–212 (2008).
[CrossRef]

Nat. Photonics

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef] [PubMed]

Other

M. Huang and J. J. Yang, Wave Propagation (Intech Press, 2011), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) A system composed of the core material layer ( r < R 1 ) and the complementary media layer ( R 1 < r < R 2 ) is optically equal to a large circle of air ( r ' < R 3 ). (b) A scheme to cloak an object with parameters of ε , μ by placing the “anti-object” with parameters of ε ' , μ ' in the complementary media layer.

Fig. 2
Fig. 2

(a) Material parameters distribution for the core material layer of the external cloak. (b) Material parameters distribution for the complementary media layer of the external cloak.

Fig. 3
Fig. 3

Electric field ( E Z ) distributions in the computational domain under plane wave ((a)-(c)) and cylindrical wave ((d)) irradiations. (a) The system is composed of core material layer ( 0 < r < 0.5 m ) and complementary media layer ( 0.5 m < r < 1 m ). (b) The circular dielectric object with radius r = 0.3 m and permittivity ε = 1.5 is centered at ( 1m , 1m ) . (c) The object in (b) is hidden by the cloak composed of modified complementary media layer with an embedded “anti-object” and a core material. (d) Another circular dielectric object with linearly changing permittivity ε = 1 r / 5 is cloaked by a similar cloak of that in (c).

Fig. 4
Fig. 4

(a) Scattering pattern of two circular dielectric objects with permittivity ε = 1 r / 5 on the top-left, and ε = 1.5 on the downside. (b) The objects in (a) are cloaked by external the cloak. (c) Scattering pattern of a dielectric circular shell with anisotropic permeability of μ r = 0.3 and μ φ = 0.6 . (d) The circular shell in (c) is cloaked by the external cloak.

Fig. 5
Fig. 5

The electric field ( E Z ) distributions in the vicinity of the cloak with loss tangents of 0.001 (a), 0.01 (b), 0.02 (c) and 0.03 (d).

Fig. 6
Fig. 6

The electric field ( E Z ) distributions along x axis of the external cloak with different loss tangents.

Fig. 7
Fig. 7

Electric field ( E Z ) distributions in the vicinity of the external cloak without perturbation (a), with negative perturbation ( δ 2 = 0.9 ) while transverse parameters are invariant ( δ 1 = 1 ) (b); impedances are invariant ( δ 1 = 0.9 ) (c), and refraction index is invariant ( δ 1 = 1 / 0.9 ) (d).

Fig. 8
Fig. 8

Electric field ( E Z ) distributions in the vicinity of the external cloak without perturbation (a), with positive perturbation ( δ 2 = 1.1 ) while transverse parameters are invariant ( δ 1 = 1 ) (b); impedances are invariant ( δ 1 = 1.1 ) (c); and refraction index is invariant ( δ 1 = 1 / 1.1 ) (d).

Fig. 9
Fig. 9

Far field intensity of the external cloak with negative perturbation (a) and positive perturbation (b) in axial parameter.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε φ = μ φ = r f ' ( r ) / f ( r )
ε r = μ r = f ( r ) / r f ' ( r )
ε z = μ z = f ' ( r ) f ( r ) / r
ε c o m φ = μ c o m φ = r f c o m ' ( r ) / f c o m ( r ) = m 0
f c o m ( r ) = m 1 r m 0
ε c o m φ = μ c o m φ = m 0
ε c o m r = μ c o m r = 1 / m 0
ε c o m z = μ c o m z = m 0 ( r / R 2 ) 2 ( m 0 1 )
ε c o r φ = μ c o r φ = 1
ε c o r r = μ c o r r = 1
ε c o r z = μ c o r z = ( R 3 / R 1 ) 2

Metrics