Abstract

We report on a novel fabrication scheme obtaining metal nanoparticles grown in a crystal high index ambient, i.e. SrTiO3 (STO). Starting from a deposited Au layer ellipsoidal and orientated Au nanoantennas can be prepared and controlled via laser ablation. We discuss the deposition conditions and demonstrate the geometrical properties of the Au nanoantennas embedded in the SrTiO3 by Transmission Electron Micrography (TEM) and X-ray Diffraction (XRD) investigations. The plasmonic activity of the resulting highly orientated crystalline particles could be observed in transmission spectroscopy experiments showing an influence on the resulting size, shape and number density of nanoparticles that can be adjusted by precisely controlling the deposition parameters. All performed variations have simultaneously been observed in terms of the spectral shift of the localized plasmon resonance upon illumination. Therefore the resonance shift in the measured transmission spectra can be associated to geometrical changes in the nanoantennas’ shape that can be explained using a quasi-static description of the nanoparticles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  2. A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).
  3. A. Csaki, S. Berg, N. Jahr, C. Leiterer, T. Schneider, A. Steinbrück, D. Zopf, and W. Fritzsche, in Gold Nanoparticles: Properties, Characterization, Application, P. E. Chow, ed. (Nova Science, 2010).
  4. W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
    [CrossRef]
  5. M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
    [CrossRef]
  6. M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
    [CrossRef]
  7. S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
    [CrossRef]
  8. B. Karthikeyan, “Fluorescent glass embedded silver nanoclusters: an optical study,” J. Appl. Phys.103(11), 114313 (2008).
    [CrossRef]
  9. V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
    [CrossRef]
  10. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  11. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  13. M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. Van Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

2010

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

2008

B. Karthikeyan, “Fluorescent glass embedded silver nanoclusters: an optical study,” J. Appl. Phys.103(11), 114313 (2008).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2000

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cavaleiro, A.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Cheong, B.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Chepok, A.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Cho, S.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chung, M.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Csaki, A.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Cunha, L.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Engmann, S.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Fritzsche, W.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Gaiduk, P.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

Garwe, F.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Gonczarek, R.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Grosse, V.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Hansen, J. L.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

Hu, D. Z.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Jacak, J.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Jacak, L.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Jacak, W.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Jahr, N.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kabir, M. R.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Karthikeyan, B.

B. Karthikeyan, “Fluorescent glass embedded silver nanoclusters: an optical study,” J. Appl. Phys.103(11), 114313 (2008).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kim, S. G.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Kim, W. M.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Kjeldsen, M. M.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

Krasnyj, J.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Larsen, A. N.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

Lee, S.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Lee, T. S.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Müller, R.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Oh, S.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Park, S. J.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Pedersen, T. G.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

Rettenmayr, M.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Schaadt, D.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schmidl, F.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Schneider, T.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Seidel, P.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Song, K. B.

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Steinbrück, A.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Stranik, O.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Torrell, M.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Undisz, A.

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Vasilevskiy, M. I.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Vaz, F.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Wirth, J.

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. M. Kjeldsen, J. L. Hansen, T. G. Pedersen, P. Gaiduk, and A. N. Larsen, “Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials,” Appl. Phys., A Mater. Sci. Process.100(1), 31–37 (2010).
[CrossRef]

J. Appl. Phys.

W. Jacak, J. Krasnyj, J. Jacak, R. Gonczarek, A. Chepok, L. Jacak, D. Z. Hu, and D. Schaadt, “Radius dependent shift in surface plasmon frequency in large metallic nanospheres: theory and experiment,” J. Appl. Phys.107(12), 124317 (2010).
[CrossRef]

B. Karthikeyan, “Fluorescent glass embedded silver nanoclusters: an optical study,” J. Appl. Phys.103(11), 114313 (2008).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of meta nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Mater. Lett.

M. Torrell, L. Cunha, M. R. Kabir, A. Cavaleiro, M. I. Vasilevskiy, and F. Vaz, “Nanoscale color control of TiO2 films with embedded Au nanoparticles,” Mater. Lett.64(23), 2624–2626 (2010).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A

A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, and W. Fritzsche, “Molecular plasmonics: light meets molecules at the nanoscale,” Philos. Trans. R. Soc. London, Ser. A (in press).

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi (RRL)

V. Grosse, S. Engmann, F. Schmidl, A. Undisz, M. Rettenmayr, and P. Seidel, “Formation of gold nano-particles during pulsed laser deposition of YBa2Cu3O7-δ thin films,” Phys. Status Solidi (RRL)4(5–6), 97–99 (2010).
[CrossRef]

Thin Solid Films

S. Cho, S. Lee, S. Oh, S. J. Park, W. M. Kim, B. Cheong, M. Chung, K. B. Song, T. S. Lee, and S. G. Kim, “Optical properties of Au nanocluster embedded dielectric films,” Thin Solid Films377–378(1-2), 97–102 (2000).
[CrossRef]

Other

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. Van Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. Csaki, S. Berg, N. Jahr, C. Leiterer, T. Schneider, A. Steinbrück, D. Zopf, and W. Fritzsche, in Gold Nanoparticles: Properties, Characterization, Application, P. E. Chow, ed. (Nova Science, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TEM micrographs: a) Characteristic alignment of gold nanoparticles within a STO matrix, here with a film thickness of 140 nm and b) High resolution image of a Au crystallite. The visible fringes underneath the gold particle are caused by sample preparation via focused ion beam technique.

Fig. 2
Fig. 2

a) Changes of particle position within the STO matrix (dot) and b) Size of gold particles in a- and c-axis.

Fig. 3
Fig. 3

(a) Effect of the particle shape. Starting from a sphere with diameter of 10 nm, one axis has been varied up to 30 nm, yielding an ellipsoid with a red-shifted resonance wavelength, with respect to the initial sphere. (b) Variation of the dielectric ambient material.

Fig. 4
Fig. 4

Influence of the distance between Au particles.

Fig. 5
Fig. 5

Transmission spectrum of STO substrate and 35 nm STO film.

Fig. 6
Fig. 6

Extinction spectra of five samples prepared with 1 nm Au and different STO layer thicknesses.

Fig. 7
Fig. 7

Extinction spectra of four samples prepared with different Au and STO layer thicknesses, a) 0.5 nm Au, 35 nm STO; b) 0.5 nm Au, 70 nm STO ; c) 1 nm Au, 35 nm STO; d) 1 nm Au, 70 nm STO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C sca,l (ω)= k 4 (ω) 6π | α l (ω) | 2 , C abs,l (ω)=k(ω)[ α l (ω)], C ext,l (ω)= C sca,l (ω)+ C abs,l (ω).
α l (ω)= 4π ε 0 ε a (ω) a x a y a z 3 ε i (ω) ε a (ω) ε a (ω)+ L l [ ε i (ω) ε a (ω)] .
L l = a x a y a z 2 0 du ( a l 2 +u) (u+ a x 2 )(u+ a y 2 )(u+ a z 2 ) .

Metrics