Abstract

We systematically study the optical spectra of ZnO grown by atomic-layer deposition as a function of Al (and Ti) doping concentration. The spectra measured on films are well described by fits using a Drude free-electron model. The derived plasma frequencies are consistent with the expected amount of doping and can be continuously and controllably tuned from small values to about 400 THz. The losses (damping) are also quantified. In addition, we achieve smooth conformal coatings of three-dimensional polymer templates made by direct laser writing. Altogether, Al:ZnO appears as an attractive “tunable metal” for three-dimensional infrared metamaterials or transformation-optics architectures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [CrossRef]
  2. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  3. X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
    [CrossRef]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  5. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
    [CrossRef] [PubMed]
  6. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express 18(5), 4491–4498 (2010).
    [CrossRef] [PubMed]
  7. R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).
  8. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).
  9. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
    [CrossRef]
  10. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
    [CrossRef]
  11. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  12. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
    [CrossRef] [PubMed]
  13. B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
    [CrossRef] [PubMed]
  14. A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
    [CrossRef]
  15. C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
    [CrossRef]
  16. M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
  17. V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
    [CrossRef]
  18. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
    [CrossRef]
  19. J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003).
    [CrossRef]
  20. S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys. 44(2), 1062–1066 (2005).
    [CrossRef]
  21. K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
    [CrossRef] [PubMed]
  22. C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
    [CrossRef]
  23. J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
    [CrossRef]
  24. J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
    [CrossRef]
  25. P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
    [CrossRef]
  26. G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
    [CrossRef]
  27. S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
    [CrossRef]
  28. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
    [CrossRef]

2011 (7)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[CrossRef]

2010 (6)

C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
[CrossRef]

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
[CrossRef]

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express 18(5), 4491–4498 (2010).
[CrossRef] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

2008 (2)

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

2006 (3)

F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006).
[CrossRef] [PubMed]

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

2005 (3)

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys. 44(2), 1062–1066 (2005).
[CrossRef]

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

2003 (2)

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003).
[CrossRef]

B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
[CrossRef] [PubMed]

1994 (1)

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Ahn, C. H.

C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
[CrossRef]

Alabastri, A.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

An, K.-S.

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

Andryieuski, A.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Arstila, K.

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bae, K.-R.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

Banerjee, P.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

Boltasseva, A.

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Braun, P. V.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

Busch, K.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Buso, D.

Cao, H.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Chang, R. P. H.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Cheng, W.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Chichkov, B.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Chiyoda, K.

Cho, H. K.

C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
[CrossRef]

Cho, W.

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

Choi, Y.-J.

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Denning, R. G.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Deubel, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Elam, J. W.

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Essig, S.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Formanek, F.

Freymann, G.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Frölich, A.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Furstenberg, R.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

George, S. M.

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003).
[CrossRef]

Gerthsen, D.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Giessen, H.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

Gissibl, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

Godlewski, M.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Golledge, S.

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

Gordon, R. G.

B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
[CrossRef] [PubMed]

Graugnard, E.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Gu, M.

Guziewicz, E.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Hahn, H.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Hatanpää, T.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

Hermatschweiler, M.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Hossain, M. M.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Ishikawa, A.

Jakiela, R.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Jia, B.

Jin Yun, S.

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

John, S.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Johnson, D. C.

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

Kariniemi, M.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

Kawata, S.

Kemell, M.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

Keun Kim, S.

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

Kim, C. G.

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

Kim, H.

C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
[CrossRef]

Kim, J. Y.

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

King, J. S.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Kiyan, R.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Klotzbücher, T.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

Ko Park, S.-H.

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

Krajewski, T. A.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Kriegler, C. E.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Kwon, S. J.

S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys. 44(2), 1062–1066 (2005).
[CrossRef]

Lavrinenko, A.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Lee, B. K.

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

Lee, S. B.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

Lee, S. S.

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

Lee, W.-J.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

Lee, Y.-J.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

Leskelä, M.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

Li, J.

Lim, B. S.

B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
[CrossRef] [PubMed]

Linden, S.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Lujala, V.

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Luka, G.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Malureanu, R.

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Müller, E.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Na, J.-S.

J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
[CrossRef]

Naik, G. V.

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Niinistö, J.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

Niskanen, A.

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

Ozin, G. A.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Park, H.-H.

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

Parsons, G. N.

J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
[CrossRef]

Pérez-Willard, F.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Radke, A.

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

Rahtu, A.

B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
[CrossRef] [PubMed]

Rill, M. S.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Ritala, M.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

Roche, O. M.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Rubloff, G. W.

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Sajavaara, T.

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

Scarel, G.

J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
[CrossRef]

Scharrer, M.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Scrimgeour, J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Seong Hwang, C.

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Sharp, D. N.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Skarp, J.

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Staude, I.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Summers, C. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

Suntola, T.

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Takeyasu, N.

Tammenmaa, M.

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Tanaka, T.

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Thiel, M.

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Turberfield, A. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

von Freymann, G.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Wachnicki, L.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Wegener, M.

I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011).
[CrossRef] [PubMed]

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

White, J. O.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

Witkowski, B. S.

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Wu, X.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Yamilov, A.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Yu, X.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

Adv. Mater. (4)

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007).
[CrossRef]

A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006).
[CrossRef]

N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006).
[CrossRef]

Appl. Phys. A (1)

R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).

Appl. Phys. B (1)

C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994).
[CrossRef]

Chem. Mater. (2)

M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).

J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003).
[CrossRef]

Chem. Vap. Deposition. (1)

A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys. 44(2), 1062–1066 (2005).
[CrossRef]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011).
[CrossRef]

Metamaterials (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011).
[CrossRef]

Nat. Mater. (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Science (2)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thin Solid Films (2)

S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005).
[CrossRef]

C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pulse sequence used for one macro-cycle of doped ZnO film growth. The vessels containing the precursors are opened for a time t i (i = 1, 2, 3 - values given below) and the precursor vapors are held in the reaction chamber for a time t exp to allow sufficient time for the precursors to react with the substrate surface by closing the stopvalve between the reaction chamber and the pump. After N cycles of ZnO growth, an additional dopant pulse is introduced into the chamber. t 1 = t 2 = 15 ms, whereas t 3 = 15 ms for TMA and t 3 = 0.1 s for TIP. For the deposition of films on flat substrates we used an exposure time t exp = 1 s, whereas we chose an exposure time of t exp = 5 s for deposition on three-dimensional substrates. The nominal doping density is controlled by varying the integer N.

Fig. 2
Fig. 2

Optical properties of an Al:ZnO film with a nominal doping density given by N = 27. a) Measured intensity reflectance R (blue) and transmittance T (red) spectra under normal incidence (dashed lines) and calculated spectra (solid lines) using the Drude parameters ε = 3.78, ω Pl = 2π·289·1012 s−1, γ = 2π·44·1012 s−1 and a slab thickness d = 253 nm. An uncoated glass substrate is used as a reference for the transmittance measurements and is also taken into account in the calculations. A silver mirror was used as a reference for reflectance measurements. b) Complex permittivity corresponding to the Drude parameters in a). Results for different values of N are shown in Fig. 3.

Fig. 3
Fig. 3

Dependence of the effective Drude parameters of doped ZnO on the number of ZnO cycles N per dopant pulse. If Al-doping is the only source of free charges, Drude theory predicts that the angular plasma frequency (ω Pl, blue symbols) is proportional to the square root of their density, i.e. to N -1/2. The lower horizontal axis is chosen to allow for checking this dependence. Obviously, an additional “intrinsic” doping is present in our films. At N > 72, a reliable determination of effective parameters is no longer possible with our setup. In addition, we show the collision frequency γ (red symbols) and the background permittivity ε (green symbols) in Eq. (1). The dashed line is a linear fit to ω Pl and intercepts the y-axis at ω Pl = 2π·55∙1012 s−1.

Fig. 4
Fig. 4

Oblique-view electron micrograph of a woodpile photonic-crystal polymer template (black to dark gray) coated with Al:ZnO (bright gray) after focused-ion-beam (FIB) milling to reveal the composite’s interior. The variation of the Al:ZnO film thickness is less than 5 nm, indicating conformal coating of the structure. The viewing angle is 54° relative to the surface normal.

Fig. 5
Fig. 5

Atomic-force-microscopy (AFM) images of a Si wafer a) before and b) after deposition of 110 nm of Al:ZnO like in Fig. 4. The resulting RMS roughness of a mere 0.59 nm in b) indicates that very smooth films have been achieved.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω Pl 2 ω 2 + γ 2 + i γ ω ω Pl 2 ω 2 + γ 2
ω Pl 2 = n e 2 ε 0 m e *

Metrics