Abstract

We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman and fluorescence spectroscopy to characterize the structural changes. The correlation between Raman peak shifts and fluorescence from phosphorus–oxygen hole center (POHC) defects indicates that fs-laser writing results in a depolymerization of the phosphate glass network. The results also show that the exact glass composition should be taken into account when fabricating waveguide devices in phosphate glasses, in order to both expand the fs-laser processing conditions and maximize favorable morphological changes for 3-D photonic devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
    [CrossRef]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  4. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
    [CrossRef]
  5. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
    [CrossRef]
  6. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
    [CrossRef]
  7. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [CrossRef]
  8. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
    [CrossRef]
  9. D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
    [CrossRef]
  10. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
    [CrossRef]
  11. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
    [CrossRef]
  12. R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
    [CrossRef] [PubMed]
  13. A. Ferrer, A. Ruiz de la Cruz, D. Puerto, W. Gawelda, J. A. Vallés, M. A. Rebolledo, V. Berdejo, J. Siegel, and J. Solis, “In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics,” J. Opt. Soc. Am. B 27(8), 1688 (2010).
    [CrossRef]
  14. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011).
    [CrossRef] [PubMed]
  15. F. Liebau, M. O’Keefe, and A. Novrotsky, Structure and Bonding in Crystals II _Academic Press, New York, 1981, p. 197.
  16. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
    [CrossRef]
  17. A. K. Varshneya, Fundamentals of inorganic glasses (2nd edition), Society of Glass Technology, Boston, MA (2006).
  18. D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
    [CrossRef]
  19. J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
    [CrossRef]
  20. R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
    [CrossRef]
  21. R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
    [CrossRef]
  22. L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
    [CrossRef]
  23. L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
    [CrossRef]
  24. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
    [CrossRef]
  25. D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
    [CrossRef]
  26. U. Natura and D. Ehrt, “Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 151–158 (2001).
    [CrossRef]
  27. U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 143–150 (2001).
    [CrossRef]
  28. J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
    [CrossRef]

2011 (1)

2010 (1)

2009 (4)

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

2008 (3)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2006 (2)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

2005 (1)

L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
[CrossRef]

2004 (1)

2002 (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

2001 (4)

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
[CrossRef]

U. Natura and D. Ehrt, “Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 151–158 (2001).
[CrossRef]

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 143–150 (2001).
[CrossRef]

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

2000 (2)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

1998 (1)

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

1996 (1)

1995 (1)

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

1990 (1)

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Arai, A.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

Bennion, I.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Berdejo, V.

Boeyens, J. C. A.

L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
[CrossRef]

Bogachev, G.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Bovatsek, J.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

Brow, R. K.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

Cerullo, G.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Chan, J. W.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

Chiodo, N.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Davis, K. M.

de Waal, D.

L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
[CrossRef]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Dimitriev, Y.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Dubov, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Ehrt, D.

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 143–150 (2001).
[CrossRef]

U. Natura and D. Ehrt, “Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 151–158 (2001).
[CrossRef]

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Esser, D.

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

Ferrer, A.

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

Fletcher, L. B.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gawelda, W.

Gottmann, J.

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

Griscom, D. L.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

Hayden, J. S.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

Hernandes, A. C.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
[CrossRef]

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hudgens, J. J.

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

Huser, T.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

Ilieva, D.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Jivov, B.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Killi, A.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Kopf, D.

Krol, D. M.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

Lebullenger, R.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
[CrossRef]

Lederer, M.

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

Mahlmann, D.

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Martin, S. W.

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Mezentsev, V. K.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Morgner, U.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Myers, S. T.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

Natura, U.

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 143–150 (2001).
[CrossRef]

U. Natura and D. Ehrt, “Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 151–158 (2001).
[CrossRef]

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Nunes, L. A. O.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
[CrossRef]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Penkov, I.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Petkov, C.

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

Phifer, C. C.

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

Popovic, L.

L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
[CrossRef]

Puerto, D.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

Ramponi, R.

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Rebolledo, M. A.

Reichman, W. B.

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

Reis, S. T.

Risbud, S. H.

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

Ruiz de la Cruz, A.

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Siegel, J.

Solis, J.

Sugimoto, N.

Svelto, O.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

Taccheo, S.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29(16), 1900–1902 (2004).
[CrossRef] [PubMed]

Tallant, D. R.

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

Troy, N.

Vallés, J. A.

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Weber, M. J.

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

Witcher, J. J.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

Wortmann, D.

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

Appl. Phys. B (1)

D. Esser, D. Mahlmann, D. Wortmann, and J. Gottmann, “Interference microscopy of femtosecond laser written waveguides in phosphate glass,” Appl. Phys. B 96(2-3), 453–457 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329 (1997).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Svelto, and G. Cerullo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys., A Mater. Sci. Process. 93(1), 17–26 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: Challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1370–1381 (2008).
[CrossRef]

R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron. 12(2), 277–285 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. W. Chan, T. Huser, J. S. Hayden, S. H. Risbud, and D. M. Krol, “Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses,” J. Am. Ceram. Soc. 85(5), 1037–1040 (2002).
[CrossRef]

J. Appl. Phys. (3)

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[CrossRef]

L. B. Fletcher, J. J. Witcher, W. B. Reichman, A. Arai, J. Bovatsek, and D. M. Krol, “Changes to the network structure of Er–Yb doped phosphate glass induced by femtosecond laser pulses,” J. Appl. Phys. 106(8), 083107 (2009).
[CrossRef]

J. Non-Cryst. Solids (7)

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263–264(1-2), 1–28 (2000).
[CrossRef]

D. Ilieva, B. Jivov, G. Bogachev, C. Petkov, I. Penkov, and Y. Dimitriev, “Infrared and Raman spectra of Ga2O3–P2O5 glasses,” J. Non-Cryst. Solids 283(1-3), 195–202 (2001).
[CrossRef]

J. J. Hudgens, R. K. Brow, D. R. Tallant, and S. W. Martin, “Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses,” J. Non-Cryst. Solids 223(1-2), 21–31 (1998).
[CrossRef]

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Solids 284(1-3), 55–60 (2001).
[CrossRef]

R. K. Brow, D. R. Tallant, S. T. Myers, and C. C. Phifer, “The Short Range Structure of Zinc Phosphate Glass,” J. Non-Cryst. Solids 191(1-2), 45–55 (1995).
[CrossRef]

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264(1-2), 240–250 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

L. Popović, D. de Waal, and J. C. A. Boeyens, “Correlation between Raman wavenumbers and P—O bond lengths in crystalline inorganic phosphates,” J. Raman Spectrosc. 36, 2–11 (2005).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(08), 620–625 (2006).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

U. Natura and D. Ehrt, “Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 151–158 (2001).
[CrossRef]

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1-2), 143–150 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

A. K. Varshneya, Fundamentals of inorganic glasses (2nd edition), Society of Glass Technology, Boston, MA (2006).

F. Liebau, M. O’Keefe, and A. Novrotsky, Structure and Bonding in Crystals II _Academic Press, New York, 1981, p. 197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Phosphate tetrahedral units – oxygen atoms (pink) connected to a phosphorus atoms (blue); Q3 crosslinking units; Q2 middle units; Q1 end units; Q0 isolated units.

Fig. 2
Fig. 2

Raman spectrum of commercial phosphate glass (MM-2a60 from Kigre Inc.)

Fig. 3
Fig. 3

Fs-laser modified Er-Yb doped phosphate glass written with 885 kHz rep rate, 320 nJ pulse energy, 50 μm/s scan speed. (a) Color map of shifts in the relative spectral position of the 1209 cm−1 Raman peak as a function of the spatial position (b) Color map of changes in the refractive index as a function of the spatial position (c) Plot of the shifts in the 1209 cm−1 Raman peak as a function of the change in refractive index for the heat effected area. *Calculated change in P-O bond length [23].

Fig. 4
Fig. 4

(a) spectra of unmodified IOG-1 (Schott Inc) phosphate glass; (b) spectra of fs-modified IOG-1 phosphate glass; (c) POHC defects: a hole gets trapped on two orbitals of two oxygen atoms [24,28]. *Artifacts from a 488 nm dichroic filter.

Fig. 5
Fig. 5

Diagram of fully integrated free-space all-optical system used for (a) femtosecond laser waveguide writing inside phosphate glass; (b) in situ confocal fluorescence and Raman microscopy; (c) in situ white light microscopy and waveguide characterization.

Fig. 6
Fig. 6

Microscope images of fs-modified zinc phosphate glass written with fs-laser fluences of 8 J/cm2 (1) 30.0ZnO-10.0Al2O3-60.0P2O5 glass (2) 50.0ZnO-50.0P2O5 glass (3) 55.0ZnO-45.0P2O5 glass (4) 60.0ZnO-40.0P2O5 glass (5) 0.7Er2O3-1.3Yb2O3-56.0ZnO-42.0P2O5 glass (6) 0.7Er2O3-1.3Yb2O3-58.8ZnO-39.2P2O5 glass (7) 65.0ZnO-35.0P2O5 glass; (a) white light images of the modification along the waveguide direction (b) Transmission white light images of the modification cross-section (c) 660 nm transmission near field images.

Fig. 7
Fig. 7

Raman spectra of unmodified bulk phosphate glasses (1) 30.0ZnO-10.0Al2O3-60.0P2O5 glass (2) 50.0ZnO-50.0P2O5 glass (3) 55.0ZnO-45.0P2O5 glass (4) 60.0ZnO-40.0P2O5 glass (5) 0.7Er2O3-1.3Yb2O3-56.0ZnO-42.0P2O5 glass (6) 0.7Er2O3-1.3Yb2O3-58.8ZnO-39.2P2O5 glass (7) 65.0ZnO-35.0P2O5 glass; (a) in chain PO2 and OPO bending (b) (POP) symmetric stretch (bridging oxygen), Q2 species (c) P-O stretch, Q1 chain terminator (d) (PO2) symmetric stretch (non-bridging oxygen), Q2 species.

Fig. 8
Fig. 8

Fluorescence spectra of laser-modified and bulk 30.0ZnO-10.0Al2O3-60.0P2O5 glass for various fs-laser fluences.

Fig. 9
Fig. 9

Change in intensity of POHC fluorescence as a function of changing fs-laser pulse fluence for various glass compositions of (a) 30.0ZnO-10.0Al2O3-60.0P2O5 glass (b) 50.0ZnO-50.0P2O5 glass (c) 55.0ZnO-45.0P2O5 glass (d) 60.0ZnO-40.0P2O5 glass (e) 65.0ZnO-35.0P2O5.

Fig. 10
Fig. 10

Maximum change in intensity of POHC fluorescence as a function of the maximum 1209 cm−1 Raman mode shift modified with changing fs-laser pulse energy for various glass compositions of (a) 30.0ZnO-10.0Al2O3-60.0P2O5 glass (b) 50.0ZnO-50.0P2O5 glass (c) 55.0ZnO-45.0P2O5 glass (d) 60.0ZnO-40.0P2O5 glass..

Tables (1)

Tables Icon

Table 1 Phosphate glass properties

Metrics