Abstract

Transparent laser ceramics have been demonstrated to offer tremendous processing and design advantages in the diode-pumped solid-state laser field. Successfully developed composite Nd:YAG/Cr:YAG ceramics realized a multi-megawatt three-beam output microchip laser for efficient engine ignition. After a progress review for Giant Micro-photonics, including their wavelength extension with micro-domain controlling, we’d like to discuss the next generation of high-brightness lasers based on anisotropic ceramics. The capability of transparent anisotropic ceramics, by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons, offers extremely high-power laser materials such as RE:FAP and patterning process for multi-function integrated monolithic solid-state lasers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, “Micro solid-state photonics—review,” Rev. Laser Eng.37, 227–234 (2009).
  2. R. L. Byer, “Diode laser–pumped solid-state lasers,” Science239(4841), 742–747 (1988).
    [CrossRef] [PubMed]
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett.16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
    [CrossRef]
  6. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
    [CrossRef] [PubMed]
  7. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
    [CrossRef]
  8. T. Taira, B. Tulloch, and R. L. Byer, “Single axial mode oscillated Yb:YAG lasers,” in Extended Abstracts, 55th Autumn Meeting for Japan Society of Applied Physics (1994), Vol. 21a-E-7, p. 893.
  9. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997).
    [CrossRef] [PubMed]
  10. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
    [CrossRef]
  11. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
    [CrossRef]
  12. T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007).
    [CrossRef]
  13. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
    [CrossRef]
  14. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
    [CrossRef]
  15. T. Taira, A. Ikesue, and K. Yoshida, “Diode pumped Nd:YAG ceramics lasers,” in Advanced Solid State Lasers, W. Bosenberg and M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), paper CS4.
  16. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
    [CrossRef]
  17. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
    [CrossRef]
  18. R. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WC5.
  19. T. Taira, A. Ikesue, and K. Yoshida, “Performance of highly Nd3+-doped YAG ceramic microchip laser,” in Proc. Conf. Lasers Electro-Opt. (1999), paper CTak39, pp. 136–137.
  20. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
    [CrossRef]
  21. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
    [CrossRef] [PubMed]
  22. M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett.31(13), 2003–2005 (2006).
    [CrossRef] [PubMed]
  23. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
    [CrossRef]
  24. S. J. McNaught H. Komine, S. B. Weiss, R. Simpson, A.M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2009), paper CThA1.
  25. A. E. Siegman, Lasers (Unversity Science, 1986), pp. 1004–1040.
  26. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett.19(18), 1427–1429 (1994).
    [CrossRef] [PubMed]
  27. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994).
    [CrossRef]
  28. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
    [CrossRef]
  29. J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003).
    [CrossRef]
  30. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008).
    [CrossRef] [PubMed]
  31. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
    [CrossRef]
  32. T. Taira, “High brightness microchip laser and engine ignition,” Rev. Laser Eng.38, 576 (2010).
  33. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  34. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt.48(15), 2899–2902 (2009).
    [CrossRef] [PubMed]
  35. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
    [CrossRef]
  36. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  37. E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, G. Arisholm, S. Kurimura, K. Kitamura, T. Usami, H. Ito, and U. Keller, “Analysis of nonlinear wavelength conversion system for a red–green–blue laser-projection source,” J. Opt. Soc. Am. B23(2), 265–275 (2006).
    [CrossRef]
  38. H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
    [CrossRef]
  39. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
    [CrossRef]
  40. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
    [CrossRef] [PubMed]
  41. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
    [CrossRef] [PubMed]
  42. R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
    [CrossRef]
  43. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
    [CrossRef] [PubMed]
  44. M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
    [CrossRef] [PubMed]
  45. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
    [CrossRef] [PubMed]
  46. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  47. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
    [CrossRef]
  48. S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
    [CrossRef]
  49. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B25(7), B57–B61 (2008).
    [CrossRef]
  50. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991).
    [CrossRef] [PubMed]
  51. P. Zhu, D. Li, P. Hu, A. Schell, P. Shi, C. R. Haas, N. Wu, and K. Du, “High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm,” Opt. Lett.33(17), 1930–1932 (2008).
    [CrossRef] [PubMed]
  52. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
    [CrossRef] [PubMed]
  53. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
    [CrossRef] [PubMed]
  54. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
    [CrossRef]
  55. J. Akiyama and T. Taira, “Fabrication of rare-earth patterned laser ceramics by use of gradient magnetic field,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIWA3.

2011

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

2010

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

T. Taira, “High brightness microchip laser and engine ignition,” Rev. Laser Eng.38, 576 (2010).

2009

2008

2007

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

2006

2005

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

2004

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

2003

J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

2001

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

2000

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

1997

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997).
[CrossRef] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

1995

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

1994

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett.19(18), 1427–1429 (1994).
[CrossRef] [PubMed]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994).
[CrossRef]

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1991

1988

R. L. Byer, “Diode laser–pumped solid-state lasers,” Science239(4841), 742–747 (1988).
[CrossRef] [PubMed]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett.16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Akiyama, J.

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Arisholm, G.

Armstrong, J.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Aung, Y. L.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Baltuska, A.

Barty, C.

Bayramian, A.

Beer, G.

Bhushan, R.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Brunner, F.

Butkus, R.

Byer, R. L.

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997).
[CrossRef] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

R. L. Byer, “Diode laser–pumped solid-state lasers,” Science239(4841), 742–747 (1988).
[CrossRef] [PubMed]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Caird, J.

Campbell, R.

Cha, M.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Chai, B.

Chai, B. H. T.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Choi, H. K.

Cross, R.

Deloach, L. D.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Deng, Y.

Dill, C.

Du, K.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Ebbers, C.

Erlandson, A.

Fan, T. Y.

Fei, Y.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Freitas, B.

Fuji, T.

Fujii, M.

Fujita, H.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Gu, X.

Haas, C. R.

Hayashi, S.

Hu, P.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Ikesue, A.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Innerhofer, E.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Ishii, N.

Ishizuki, H.

X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
[CrossRef] [PubMed]

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Ito, H.

Izawa, Y.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kamimura, T.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Kaminskii, A. A.

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Kawase, K.

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Keller, U.

Kent, R.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

Kienberger, R.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kitamura, K.

Kobayashi, T.

X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
[CrossRef] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994).
[CrossRef]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991).
[CrossRef] [PubMed]

Krausz, F.

Krupke, W. F.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Kudryashov, A.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Kurimura, S.

E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, G. Arisholm, S. Kurimura, K. Kitamura, T. Usami, H. Ito, and U. Keller, “Analysis of nonlinear wavelength conversion system for a red–green–blue laser-projection source,” J. Opt. Soc. Am. B23(2), 265–275 (2006).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Kway, W. L.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Lacovara, P.

Li, D.

Loutts, G.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Lu, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Marchese, S. V.

Marcus, G.

Menapace, J.

Messing, G.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Metzger, T.

Miyanaga, N.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Miyazaki, M.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

Molander, W.

Mukai, A.

Nakatsuka, M.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Noriyuki, M.

Nozawa, Y.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Ogawa, Y.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Otani, C.

Paschotta, R.

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Payne, S. A.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Pervak, V.

Prabhu, M.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Ro, J. H.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

Saikawa, J.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

Sakai, H.

Sato, Y.

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
[CrossRef] [PubMed]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Schaffers, K.

Schell, A.

Shi, P.

Shibuya, T.

Shirakawa, A.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

Siders, C.

Smith, L. K.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Song, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

Sutton, S.

Taira, T.

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

T. Taira, “High brightness microchip laser and engine ignition,” Rev. Laser Eng.38, 576 (2010).

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
[CrossRef] [PubMed]

X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009).
[CrossRef] [PubMed]

S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt.48(15), 2899–2902 (2009).
[CrossRef] [PubMed]

T. Taira, “Micro solid-state photonics—review,” Rev. Laser Eng.37, 227–234 (2009).

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008).
[CrossRef] [PubMed]

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett.31(13), 2003–2005 (2006).
[CrossRef] [PubMed]

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997).
[CrossRef] [PubMed]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994).
[CrossRef]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991).
[CrossRef] [PubMed]

Tassano, J.

Tassano, J. B.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

Teisset, C.

Telford, S.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Tokurakawa, M.

Tsubakimoto, K.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett.31(13), 2003–2005 (2006).
[CrossRef] [PubMed]

Tulloch, W. M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Usami, T.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Wang, C. A.

Wilson, A. L.

J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

Wu, N.

Xu, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yagi, H.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yanagitani, T.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yoshida, H.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Yoshida, K.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003).
[CrossRef]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett.19(18), 1427–1429 (1994).
[CrossRef] [PubMed]

Zhu, P.

Annu. Rev. Mater. Res.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Appl. Phys. Express

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011).
[CrossRef]

Appl. Phys. Lett.

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

C. R. Phys.

T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007).
[CrossRef]

IEEE J. Quantum Electron.

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994).
[CrossRef]

J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997).
[CrossRef]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

J. Am. Ceram. Soc.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

J. Appl. Phys.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003).
[CrossRef]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Opt. Commun.

R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett.19(18), 1427–1429 (1994).
[CrossRef] [PubMed]

M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett.31(13), 2003–2005 (2006).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett.16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010).
[CrossRef] [PubMed]

J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008).
[CrossRef] [PubMed]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991).
[CrossRef] [PubMed]

P. Zhu, D. Li, P. Hu, A. Schell, P. Shi, C. R. Haas, N. Wu, and K. Du, “High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm,” Opt. Lett.33(17), 1930–1932 (2008).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009).
[CrossRef] [PubMed]

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Rev. Laser Eng.

T. Taira, “High brightness microchip laser and engine ignition,” Rev. Laser Eng.38, 576 (2010).

T. Taira, “Micro solid-state photonics—review,” Rev. Laser Eng.37, 227–234 (2009).

Science

R. L. Byer, “Diode laser–pumped solid-state lasers,” Science239(4841), 742–747 (1988).
[CrossRef] [PubMed]

Other

T. Taira, B. Tulloch, and R. L. Byer, “Single axial mode oscillated Yb:YAG lasers,” in Extended Abstracts, 55th Autumn Meeting for Japan Society of Applied Physics (1994), Vol. 21a-E-7, p. 893.

T. Taira, A. Ikesue, and K. Yoshida, “Diode pumped Nd:YAG ceramics lasers,” in Advanced Solid State Lasers, W. Bosenberg and M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), paper CS4.

R. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WC5.

T. Taira, A. Ikesue, and K. Yoshida, “Performance of highly Nd3+-doped YAG ceramic microchip laser,” in Proc. Conf. Lasers Electro-Opt. (1999), paper CTak39, pp. 136–137.

S. J. McNaught H. Komine, S. B. Weiss, R. Simpson, A.M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2009), paper CThA1.

A. E. Siegman, Lasers (Unversity Science, 1986), pp. 1004–1040.

J. Akiyama and T. Taira, “Fabrication of rare-earth patterned laser ceramics by use of gradient magnetic field,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIWA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The concept of micro solid-state photonics as micro-domain controlled materials/devices.

Fig. 2
Fig. 2

Microstructure images of polycrystalline ceramics and light-scattering sources: (1) refractive index modulation around the grain boundary, (2) index changes by inclusions or pores, (3) segregations of the different phases, (4) birefringence, (5) surface scattering by roughness. The color of each crystal describes the direction of orientation.

Fig. 3
Fig. 3

Time scale of ignition by laser-induced breakdown.

Fig. 4
Fig. 4

Photo of the monolithic Nd:YAG/Cr:YAG composite ceramic chip.

Fig. 5
Fig. 5

Photo of the composite, all-ceramics passively Q-switched Nd:YAG/Cr4+:YAG monolithic laser with three-beam output.

Fig. 6
Fig. 6

Schematics of high-field laser pulse generation based on micro-domain-based IR-OPCPA.

Fig. 7
Fig. 7

Progress map of solid-state lasers from isotropic single crystals to anisotropic ceramics.

Fig. 8
Fig. 8

Schematic of the RE-assisted magnetic orientation method for fabrication of RE-doped anisotropic laser ceramics.

Fig. 9
Fig. 9

Photograph of 2 at.% Nd:FAP laser-grade ceramics (0.5 mm in thickness and 3.5mm in width).

Fig. 10
Fig. 10

Extended wavelength by giant micro-photonics.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ p rη(r) r1lnr τ c ,
U= 0 H μ 0 Mcosθd H eff = 1 2 μ 0 V H 2 ( χ Δχ cos 2 θ ),
T M = U θ = μ 0 Δχ H 2 sin2θ 2 .
F M = μ 0 V( χ A χ B )( H )H.

Metrics